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Abstract. We describe in the context of the particle physics (PP) stan-6

dard model (SM) ‘PP-SM’ the understanding of the primordial proper-7

ties and composition of the Universe in the temperature range 130GeV >8

T > 20 keV. The Universe evolution is described using FLRW cosmol-9

ogy. We present a global view on particle content across time and de-10

scribe the different evolution eras using deceleration parameter q. In11

the considered temperature range the unknown cold dark matter and12

dark energy content of ΛCDM have a negligible influence allowing a13

reliable understanding of physical properties of the Universe based on14

PP-SM energy-momentum alone. We follow the arrow of time in the15

expanding and cooling Universe: After the PP-SM heavies (t,H,W,Z)16

diminish in abundance below T ≃ 50GeV, the PP-SM plasma in the17

Universe is governed by the strongly interacting Quark-Gluon content.18

Once the temperature drops below T ≃ 150MeV, quarks and glu-19

ons hadronize into strongly interacting matter particles comprising a20

dense baryon-antibaryon content. Rapid disappearance of baryonic an-21

timatter ensues, which adopting the present day photon-to-baryon ratio22

completes at TB = 38.2MeV. We study the ensuing disappearance of23

strangeness and mesons in general. We show that the different eras24

defined by particle populations are barely separated from each other25

with abundance of muons fading out just prior to T = O(2.5)MeV, the26

era of emergence of the free-streaming neutrinos. We develop methods27

allowing the study of the ensuing speed of the Universe expansion as a28

function of fundamental coupling parameters in the primordial epoch.29

We discuss the two relevant fundamental constants controlling the de-30

coupling of neutrinos. We subsequently follow the primordial Universe31

as it passes through the hot dense electron-positron plasma epoch. The32

high density of positron antimatter disappears near T = 20.3 keV, well33

after the Big-Bang Nucleosynthesis era: Nuclear reactions occur in the34

presence of a highly mobile and relatively strongly interacting electron-35

positron plasma phase. We apply plasma theory methods to describe36

the strong screening effects between heavy dust particle (nucleons).37

We analyze the paramagnetic characteristics of the electron-positron38

plasma when exposed to an external primordial magnetic field.39
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1 Introduction224

1.1 Theoretical models of the primordial Universe225

Connecting prior works226

In this report we explore the connection between particle, nuclear, and plasma physics227

in the evolution of the Universe. Our work concerns the domain described by the228

known laws of physics as determined by laboratory experiments.229

Our journey in time through the expanding primordial Universe has as objective230

the understanding of how different evolution eras impact each other. We are seeking to231

gain deeper insights into the fundamental processes that shaped our cosmos, providing232

a clearer picture of the universe’s origin and its ongoing expansion. The question we233

address is how a very hot soup of elementary matter evolves and connects to the234

normal matter present today, indirectly observed by the elemental ashes of the Big-235

Bang nucleosynthesis (BBN).236

We present here our theoretical insights gained over the past dozen years in an237

effort to create a backdrop of knowledge allowing us and others to seek further primor-238

dial Universe observable today. We expand considerably both in scope and content239

our recent review:240

1. “A Short Survey of Matter-Antimatter evolution in the Primordial Universe” by241

Rafelski et. al. (2023) which focused on the role of antimatter in the early universe.242

However, this document is not a traditional review. We aim here to offer a readable243

report about our own often fragmented work. In this work we collect in an edited244

and re-sequenced manner, selected material from the contents of four Ph.D. Theses245

completed at the Department of Physics, The University of Arizona by:246

2. “Non-Equilibrium Aspects of Relic Neutrinos: From Freeze-out to the Present247

Day” by Birrell et. al. (2014) studies the evolution of the relic (or cosmic) neutrino248

distribution from neutrino freeze-out at T = O(1)MeV through the free-streaming249

era up to today.250



6 Will be inserted by the editor

3. “Dense Relativistic Matter-Antimatter Plasmas” by Grayson et. al. (2024) ex-251

plores dense electron-positron and quark-gluon plasmas with strong electromag-252

netic fields generated during heavy-ion collisions and prevalent in extreme astro-253

physical environments.254

4. “Modern topics in relativistic spin dynamics and magnetism” by Steinmetz et. al.255

(2023), explore spin and magnetic moments in relativistic mechanics from both256

a quantum and classical perspective and study primordial magnetization in the257

early universe during the hot dense electron-positron plasma epoch.258

5. “Elementary Particles and Plasma in the First Hour of the Early Universe” by259

Yang et. al. (2024) deepens the understanding of the primordial composition of260

the Universe in the temperature range 300MeV > T > 0.02MeV which transits261

from quark-gluon plasma to hadron matter.262

Due to graduation time constraints some of this presented material is only found263

in follow-up publications, see the list below, and in reports yet to be readied for264

publication. As noted, we rely in this report in part on our research papers and265

reports including:266

6. “Self-consistent Strong Screening Applied to Thermonuclear Reactions” by Grayson267

et. al. (preprint 2024) explores strong screening effects in BBN epoch due to268

dynamic and nonlinear polarization of the matter-antimatter (electron-positron)269

ambient medium.270

7. “Matter-antimatter origin of cosmic magnetism” by Steinmetz et. al. (2023) pro-271

poses a model of para-magnetization driven by the large matter-antimatter (electron-272

positron) content of the early universe allowing for the first time in this context273

for spin magnetism.274

8. “Electron-positron plasma in BBN: Damped-dynamic screening” by Grayson et.275

al. (2023) employs the linear response theory to describe the inter-nuclear potential276

screened by in electron-positron pair plasma in the BBN epoch. This work includes277

the computation of the chemical potential and plasma damping rate required in278

semi-analytical study of the relativistic Boltzmann equation in the context of the279

linear response theory.280

9. “Dynamic magnetic response of the quark-gluon plasma to electromagnetic fields”281

by Grayson et. al. (2022) describes linear response theory applied to the quark-282

gluon plasma environment in the presence of strong magnetic fields.283

10. “Cosmological Strangeness Abundance” by Yang and Rafelski (2021) presents our284

complete study of the strange particle composition in the expanding primordial285

Universe including determination of various freeze-out temperatures.286

11. “Current-conserving Relativistic Linear Response for Collisional Plasmas” by For-287

manek et. al. (2021) develops relativistic linear response plasma theory imple-288

menting conservation laws, obtaining general solutions and laying foundation for289

applications to primordial Universe plasma conditions.290

12. “The Muon Abundance in the Primordial Universe” by Rafelski and Yang (2021)291

is a conference proceedings paper dedicated to exploration of muon abundance292

and its persistence temperature in the primordial Universe.293

13. “Reactions Governing Strangeness Abundance in Primordial Universe” by Rafelski294

and Yang (2020) is a conference proceeding paper which lays ground work for the295

study of strangeness reactions in the primordial Universe.296

14. “Possibility of bottom-catalyzed matter genesis near to primordial QGP hadroniza-297

tion” by Yang and Rafelski (preprint 2020) was our fist study of the bottom flavor298

abundance and show the nonequilibrium behavior near to QGP hadronization.299

15. “Lepton Number and Expansion of the Universe” by Yang et. al. (preprint 2018)300

proposes a model of large lepton asymmetry and explore how this large cosmolog-301

ical lepton yield relates to the effective number of (Dirac) neutrinos.302
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16. “Temperature Dependence of the Neutron Lifespan” by Yang et. al. (preprint303

2018) is a study of neutron lifespan in plasma with Fermi-blocking from electron304

and neutrino.305

17. “Strong fields and neutral particle magnetic moment dynamics” by Formanek et.306

al. (2017) was an overview of our early research group’s efforts in studying neutral307

particle dynamics in electromagnetic fields. It includes a neutrino section.308

18. “The hot Hagedorn Universe” by Rafelski and Birrell (2016) is a short confer-309

ence report recounting the impact of Hagedorn work on phase transformation at310

Hagedorn temperature in primordial Universe, updating these results to modern311

context.312

19. “Relic Neutrino Freeze-out: Dependence on Natural Constants” by Birrell et. al.313

(2014) is a study of neutrino freeze-out temperature as a function of standard314

model parameter and its application on the effective number of (Dirac) neutri-315

nos. This reference provides all neutrino-matter weak interaction matrix elements316

required for the Boltzmann code.317

20. “Quark–gluon Plasma as the Possible Source of Cosmological Dark Radiation” by318

Birrell and Rafelski (2014) explores the role of dark radiation created at time of319

QGP hadronization in accelerating Universe today.320

21. “Boltzmann Equation Solver Adapted to Emergent Chemical Non-equilibrium”321

by Birrell et. al. (2014) addresses the transport theory tools we developed to322

characterize the slow in time freeze-out of neutrinos in primordial Universe.323

22. “Proposal for Resonant Detection of Relic Massive Neutrinos” by Birrell and324

Rafelski (2014) characterizes the primordial neutrino flux spectrum today and325

explores experimental approaches for experimental observations.326

23. “Traveling Through the Universe: Back in Time to the Quark-Gluon Plasma Era”327

by Rafelski and Birrell (2013) presents a conference report on the connection328

between quark-gluon plasma and neutrino freeze-out epochs.329

24. “Connecting QGP-Heavy Ion Physics to the Early Universe” by Rafelski et. al.330

(2013) explores in a conference setting the properties of the primordial Universe331

at QGP hadronization and connects to the ongoing experimental heavy-ion effort332

to study the hadronization process.333

25. “Fugacity and Reheating of Primordial Neutrinos” by Birrell et. al. (2013) is as334

study of neutrino fugacity as a function of neutrino kinetic freeze-out tempera-335

ture. This short work includes neutrino interaction matrix elements and is helping336

the eValuation of neutrino relaxation time.337

26. “Relic Neutrinos: Physically Consistent Treatment of Effective Number of Neu-338

trinos and Neutrino Mass” by Birrell et. al. (2012) is a model independent study339

of the neutrino momentum distribution at freeze-out, treating the freeze-out tem-340

perature as a free parameter.341

27. “From Quark-Gluon Universe to Neutrino Decoupling: 200 < T < 2MeV” by342

Fromerth et. al. (2012) Conference report presenting a first review connecting343

the Quark-Hadron phase transformation and neutrino decoupling as a function of344

current era cosmological properties.345

28. “Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe”346

by Kuznetsova and Rafelski (2010) Shows that some unstable hadrons may persist347

in evolution of the Universe as the detailed balance condition is never broken due348

to strong coupling to the photon background.349

29. “Hadronization of the Quark Universe” by Fromerth and Rafelski (2002) is a first350

detailed study of chemical potentials and conditions of hadronization of QGP in351

primordial Universe.352

Additionally, material adapted from Refs. [30,31,32,33] has been included. This allows353

to address strong interactions and quark-gluon plasma (QGP) hadronization in the354

Universe: (i) Deconfined states of hot quarks and gluons, the quark-gluon plasma355
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(QGP); and (ii) Hot hadronic phase of matter, also called hadronic gas, as applicable356

to the context of the primordial Universe. It is our hope that this collection of material357

allows the reader to obtain a smooth connection in the entire applicable temperature358

domain we explore 130GeV > T > 20 keV.359

Dominance of visible matter in primordial Universe360

In this report, we aim to connect various eras of cosmological evolution which can361

be addressed with some confidence in view of the already known particle and nuclear362

properties as measured experimentally. By analyzing the primordial Universe as a363

function of time in Fig. 1.1 we are exploring the role of particle physics standard364

model (PP-SM) in the Universe evolution. We snapshot in this report specific epochs365

in primordial Universe, or/and on specific physical conditions such as primordial366

magnetic fields.367

In the cosmic epoch considered here with temperature above kT = 20 keV the368

present day dominant dark matter and dark energy played a negligible role in the369

cosmos. The changing energy component composition of the Universe is illustrated370

in Fig. 1.1. To create the figure we integrate the Universe backwards in time. The371

initial condition is the assumed composition of the Universe in the current era: 69%372

dark energy, 26% dark matter, 5% baryons, photons and neutrinos make less than373

one percent in current era; we further assumed one massless neutrino and two with374

mν = 0.1 eV, other neutrino mass values are possible, constraints remain weak. How375

this solution is obtained will become evident at the end of Sec. 1.3 below.376

As described, there are two unknown dark components as one is able to disen-377

tangle these given two independent inputs in the cosmic energy-momentum tensor of378

homogeneous isotropic matter, pressure and energy density, which can be related by379

equations of state. The current epoch cosmic accelerated expansion (Nobel price 2011380

to Saul Perlmutter, Adam Riess, and Brian P. Schmidt – a graduate also in physics381

at the University of Arizona) creates the need for this two component “darkness”.382

Dark energy in conventional definition is akin to Λ=Einstein’s cosmological term.383

Λ is a fixed property of the Universe and does not scale with temperature. In compari-384

son radiation energy content scales with T 4 and is vastly dominant in the temperature385

range we explore; the dark energy (black line) emerges in a very recent past (on loga-386

rithmic time scale, see Fig. 1.1. Cold i.e. dark matter (CDM) content scales with T 3/2
387

for m/T ≫ 1. In the temperature regime of interest to us CDM (blue line in Fig. 1.1)388

complements the invisible normal baryonic matter (purple line) and both are practi-389

cally invisible in Universe inventory in the epoch we explore, emerging just after as a390

10−5 energy fraction shown Fig. 1.1. The further back we look at the hot Universe, the391

more irrelevant become all forms of matter, including the “dark” matter component.392

There is considerable tension between studies determining the present day speed393

of cosmic expansion (Hubble parameter) [34,35]: Extrapolation from more distant394

past, looking as far back as is possible, i.e. the recombination epoch near redshift395

z = 1000, are smaller than the Universe properties observed and studied in the current396

epoch. This result stated often asking the question “67 or 75?” about contemporary397

Hubble parameterH0. This unresolved issue arises comparing diverse epochs when the398

Universe was in its atomic, molecular, stellar forms. One would think that therefore399

this discrepancy is in principle irrelevant to our particle and plasma study of the400

primordial Universe.401

However, this separation of scales maybe not complete as we will argue. Depending402

on details of PP-SM unobserved contents, e.g. in the neutrino sector, free streaming403

not quite massless quantum neutrinos contribute to darkness and may impact the404

result of extrapolation (“67 or 75?”) of the Hubble expansion from recombination405

epoch to the current epoch. One could argue that the effort to study the ”Unknown”406
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darkness in cosmology suffers from the lack of full understanding of the ”Known” in407

the primordial cosmos which masquerades as darkness today. This is one of the many408

motivations for the research effort we pursue.409

Cosmic plasma in the primordial Universe410

411

We use units in which the Boltzmann constant k = 1. In consequence, the tem-412

perature T is discussed in this report in units of energy either MeV ≃ 2mec
2 (me is413

the electron mass) or GeV= 1000 MeV ≃ mNc
2 (mN is the mass of a nucleon) or as414

the universe cools in keV, one-thousandth of an MeV. The conversion of an MeV to415

temperature familiar units involves ten additional zeros. This means that when we416

explore hadronic matter at the ‘low’ temperature:417

100MeV ≡ 116× 1010 K , (1.1)

we exceed the conditions in the center of the Sun at T = 11 × 106 K by a factor418

100 000.419

The primordial hot Universe fireball underwent several nearly adiabatic phase420

changes that dramatically evolved its bulk plasma properties as it expanded and421

cooled in the temperature range below temperature of electro-weak (EW) boundary422

at T = 130GeV when massive elementary particles emerged in the symmetry broken423

phase of matter. We will address in this work four well separated domains of particle424

plasma and two topical plasma challenges also visible by inspection of Fig. 1.1. Af-425

ter the electroweak symmetry breaking sets in, the comic plasma in the primordial426

Universe evolves in the first hour down to temperature of about T ≃ 10 keV. Notable427

plasma epochs include:428

1. Primordial quark-gluon plasma epoch: At early times when the tempera-429

ture was between 130GeV > T > 0.15GeV we have in the primordial plasma in430

their thermal abundance all PP-SM building blocks of the Universe as we know431

them today, including the Higgs particle, the vector gauge electroweak and strong432

interaction bosons, all three families of leptons and free deconfined quarks: For433

most of the evolution of QGP all hadrons are dissolved into their constituents434

u, d, s, t, b, c, g. However, as temperature decreases below heavy particle mass the435

thermal abundance is much reduced but is in general expected to remain in abun-436

dance (chemical) equilibrium due to presence of strong interactions.437

However, we will show in Sec. 2.3 that near to the QGP phase transition 300MeV >438

T > 150MeV, the chemical equilibrium of the bottom quark abundance is bro-439

ken, abundance described by the fugacity parameter relatively slowly diminishes,440

see Fig. 15, with only a small deviations from stationary state detailed balance,441

see Fig. 17. The expansion of the Universe through the epoch of the bottom quark442

abundance disappearance from particle inventory provides us the arrow of time443

often searched for, but never found in the current epoch.444

For general reference we establish the energy density near to the end of QGP445

epoch in the Universe by considering a benchmark value at T ≃ 150MeV446

ϵ = 1GeV/fm
3
= 1.8× 1015 g cm−3 = 1.8× 1018 kgm−3 . (1.2)

The corresponding relativistic matter pressure converted into human environment447

unit is448

P ≃ 1
3ϵ = 0.52× 1030 bar . (1.3)
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2. Hadronic epoch: Near the Hagedorn temperature TH ≈ 150MeV, a phase449

transformation occurred, forcing the free quarks and gluons to become confined450

within baryons and mesons; experimental results confirming the universal na-451

ture of the hadronization process were described in Ref. [36]. In the temperature452

range 150MeV > T > 20MeV, the Universe is rich in physical phenomena in-453

volving strange mesons and (anti)baryons including long lasting (anti)hyperon454

abundances [27,10]. The antibaryons disappear from the Universe inventory at455

temperature T = 38.2MeV. However, strangeness remains in the inventory down456

to T ≈ 13MeV. The detailed balance assures that the weak decay is compensated457

be inverse reactions, see Sec. 2.4 for detailed discussion.458

3. Lepton-photon epoch: For temperature 10MeV > T > 2MeV massless leptons459

and photons controlled the fate of the Universe: The Universe contained rela-460

tivistic electrons, positrons, photons, and three species of (anti)neutrinos. During461

this epoch Massive τ± disappear from the plasma at high temperature via de-462

cay processes. However, µ± leptons can persist in the primordial Universe until463

temperature T = 4.2MeV.464

In this temperature epoch neutrinos were still coupled to the charged leptons via465

the weak interaction [26,2], they freeze-out in the temperature range 3MeV >466

T > 2MeV, exact value depends on the neutrino’s flavors and the magnitude of467

the PP-SM parameters, see Sec. 3 for detailed discussion. After neutrino freeze-468

out, they still play a important role in the Universe expansion via the effective469

number of neutrinos N eff
ν , which relates to the Hubble parameter value in the470

current epoch.471

4. Electron-positron epoch: After neutrinos freeze-out at T = 3 ∼ 2MeV and be-472

come free-streaming in the primordial Universe, the cosmic plasma was dominated473

by electrons, positrons, and photons. In the e+e− plasma positrons e+ persisted in474

similar to electron e− abundance until the temperature T = 20.3 keV, see Sec. 4.1475

for detailed discussion. Properties of this plasma need to be studied in order to476

understand the behavior of the nucleon dust dynamics including:477

5. BBN in the midst of the e+e− plasma: Contrary to what was the prevailing478

context only a few years ago, it is today understood that BBN occurred within a479

rich electron-positron e+e− plasma environment. There are 1000’s if not millions480

of e+e−-pairs for each nucleon undergoing nuclear fusion reactions during the481

BBN epoch.482

6. Primordial magnetism: The e+e−-pair plasma at temperatures reaching well483

below BBN epoch in the primordial universe could be a origin of the present day484

intergalactic magnetic fields [1,7]. See Sec. 4.1 for detailed discussion. We explore485

Landau diamagnetic and magnetic dipole moment paramagnetic properties. A486

relatively small magnitude of the e+e− magnetic moment polarization asymmetry487

suffices to produce a self-magnetization in the universe consistent with present488

day observations.489

After e+e− annihilation finishes at a temperature near 20.3 keV, the Universe was490

still opaque to photons due to large photon-electron scattering Thompson cross sec-491

tion. Observational cosmology study of the Cosmic Microwave Background (CMB) [37]492

addresses the visible epoch beginning after free electron binding into atoms – a process493

referred to as recombination (clearly better called atom-formation). This is complete494

and the Universe becomes visible to optical experiments at Trecomb ≈ 0.25 eV.495

Towards experimental study of primordial particle Universe496

Just before quarks and gluons were adopted widely as elementary degrees of freedom497

in PP-SM, the so-called ‘Lee-Wick’ model of dense primordial matter prompted a498

high level meeting: The Bear Mountain November 29-December 1, 1974 symposium499



12 Will be inserted by the editor

had decisive impact on the development of the research program leading to the un-500

derstanding of primordial particles in the Universe. This meeting was not open to all501

interested researchers: Only a few dozen were invited to join the participant club, see502

last page of the meeting report: https://www.osti.gov/servlets/purl/4061527.503

This is an unusual historical fact witnessed by one of us (JR), for further discussion504

see Ref. [33].505

It is noteworthy that our report appears in essence on the 50th-year anniversary506

of this 1974 meeting and is accompanied by the passing of the arguably the most507

illustrious symposium participant, T.D. Lee (passed away August 4, 2024 at nearly age508

98). Within just half a century the newly developed PP-SM knowledge has rendered509

all but one insight of the 1974 meeting obsolete: The participating representatives510

of particle and nuclear physics elite of the epoch recognized the novel opportunity511

to experimentally explore hot and dense hadron (strongly interacting) matter by512

colliding high energy nuclei (heavy-ions), initial objective was the discovery of the Lee-513

Wick super dense matter but the objectives evolved rapidly in following years. One of514

the symposium participants, Alfred Goldhaber, planted in the Nature magazine [38]515

the seed which grew into the RHIC collider at BNL-New York.516

Phase transformation in the primordial Universe517

Thanks to the tireless effort of Rolf Hagedorn [32] the European laboratory CERN was518

intellectually well positioned to embark on the rapid development of related physics519

ideas and the required experimental program. The preeminent physics motivation520

that soon emerged was the understanding of the primordial composition of the hot521

Universe. The pre-1970 idea advanced by Hagedorn, by Huang and Weinberg [39] and522

in the following by many others was that the Universe was bound to the maximum523

Hagedorn temperature of kT ≤ kTH = 150 − 180MeV at which the energy content524

diverged. In the following years and indeed by the time of the Bear Mountain meeting525

the idea that a symmetry restoring change in phase structure would develop at finite526

temperature was already taking hold [40,41], unnoticed by the limited in scope Bear527

Mountain crowd.528

Today we understand Hagedorn temperature TH to be the phase transformation529

to the deconfined phase of matter where quarks and gluons can exist. The first clear530

statement about the existence of such a phase boundary connecting the Hagedorn531

hadron gas phase with the constituent quarks and gluons, and invoking deconfinement532

at high temperature, was the 1975 work of Cabibbo and Parisi [42]. This was followed533

by a more quantitative characterization within the realm of the MIT bag model534

by [43] and soon after by Rafelski and Hagedorn incorporating Hagedorn bootstrap535

model of hadronic matter with finite size hadrons melting into QGP, see Ref. [31] and536

appendices A and B therein. This work implemented Cabibbo-Parisi proposal as well537

as it was at that time possible.538

Could deconfined state of a hot phase of quarks and gluons we call QGP really539

exist beyond Hagedorn temperature? A broad acceptance of this new insight took540

decades to take hold. For some, this was natural. In 1992 Stefan Pokorski asked541

“What else could be there?” when one of us (JR) was struggling to convince the large542

and skeptical lecture course crowd at the Heisenberg-MPI in Munich. Those who were543

like Pokorski convinced that QCD state of matter prevails in 1970’s and 1980’s epoch544

missed the need to smoothly connect quarks to hadrons, or as we say in the title of545

this work, quarks to cosmos, and do this incorporating gluons.546

Neglecting, or omitting the gluonic degrees of freedom pushed the transformation547

temperature in the Universe towards T = 400MeV, creating a glaring conflict with548

well established Hagedorn hadronic phase temperature limit TH ≃ 160±10MeV. Yet549

other large body of work in this epoch addressed the dissolution at ultra high density550

https://www.osti.gov/servlets/purl/4061527
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and zero temperature of hadrons into quark constituents, a process of astrophysical551

interest, without relevance to the understanding of both the understanding of the552

primordial Universe and of dynamic phenomena observed in relativistic heavy-ion553

collisions.554

The present day understanding of the primordial QGP Universe was for some555

reason out of context for most nuclear scientist of the epoch, while to some of us the556

key issues became clear within less than a decade. Arguably the first Summer School557

connecting Quarks too cosmos and relativistic heavy-ion laboratory experiments was558

held in Summer 1992 under leadership of Hans Gutbrod and one of us (JR) in the559

small Italian-Tuscan resort Il Ciocco. The following is the abstract of the forward560

article Big-Bang in the Laboratory of the proceedings volume presented more than 30561

years ago [44]:562

‘Particle Production in Excited Matter’ (the title of the proceeding volume,563

and of the meeting) happened at the beginning of our Universe. It is also564

happening in the laboratory when nuclei collide at highly relativistic energies.565

This topic is one of the fundamental research interests of nuclear physics of566

today and will continue to be the driving force behind the accelerators of567

tomorrow. In this work we are seeking to deepen the understanding of the568

history of time. Unlike other areas of Physics, Cosmology, the study of the569

birth and evolution of the Universe has only one event to study. But we hope570

to recreate in the laboratory a state of matter akin to what must have been571

a stage in the evolution when nucleons were formed. This occurred not too572

long after the Big-Bang birth of the Universe, when the disturbance of the573

vacuum made appear an extreme energy density leading to the creation of574

particles, nucleons, atoms and ultimately nebulas and stars. Figure 1 depicts575

the evolution of the Universe as we understand it today. On the left hand scale576

is shown the decrease of the temperature as a function of time shown on the577

right side. The cosmological eras associated with the different temperatures578

and sizes of the Universe are described in between.579

Indeed! Today the ongoing laboratory work at CERN-LHC and BNL-RHIC ex-580

ploring the physics of QGP in the high temperature and high particle density regime581

reached in relativistic heavy-ion collisions allows us to study elementary strongly in-582

teracting matter connecting quarks to cosmos. These two fields, primordial Universe583

and ultra relativistic heavy-ion collisions relate to each other very closely. There is584

little if any relation to the other, dense neutron matter research program. Such mat-585

ter is found in compact stars; super-novae explosions create at much different matter586

density temperatures reaching 50MeV.587

Comparing Big-Bang with laboratory micro-bang588

The heavy-ion collision micro-bang involves time scales many orders of magnitude589

shorter compared to the characteristic scale governing the Universe Big-Bang: The590

expansion time scale of the Universe is determined by the interplay of the gravitational591

force and the energy content of the hot matter, whereas in the micro-bangs there is592

no gravitation to slow the explosive expansion. The initial energy density is reflecting593

on the nature of strong interactions; the lifespan of the micro-bang is a fraction of594

τMB ≤ 10−22 s, the time for particles to cross at the speed of light the localized fireball595

of matter generated in relativistic heavy-ion collision.596

It is convenient to represent the Universe expansion time constant τU as the inverse597

of the Hubble parameter at a typical ambient energy density ρ0598

τU ≡
1

H[ρ0 = 1GeV/fm3]
= 14µs (1.4)
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Given this definition, the Universe is indeed expected to be about 15 orders of mag-599

nitude slower in its expansion compared to the exploding micro-bang fireball formed600

in laboratory experiments.601

Above, the value of ρ0 is chosen in the context of hadronizing Universe near to602

T0 ≃ 150MeV: The strongly interacting degrees of freedom contribute as measured in603

laboratory relativistic heavy-ion collisions about half of this value, ρh ≃ 0.5GeV/fm3,604

the other half is the contribution of neutrinos, charged leptons, and photons. The fact605

that these two energy density components are nearly equal is implicit in many results606

shown in the following, see for example Fig. 2: At hadronization we have twice as many607

(entropic) degrees of freedom than will remain in the radiation dominated Universe608

once hadrons disappear.609

We obtain the relation between H and ρ by remembering one of the fundamen-610

tal relation in the Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology, the so611

called Hubble equation612

H2 =
8πGN

c2
ρ

3
= c2

ℏc
M2

p c
4

ρ

3
(1.5)

We introduced here and will use often the Planck mass Mp, defined in terms of GN613

1

c4
8πGN ≡

ℏc
M2

p c
4
, Mpc

2 = 2.4353 1018 GeV . (1.6)

This definition ofMp, while more convenient in cosmology, differs by the factor 1/
√
8π614

from the particle physics convention introduced by particle data group (PDG) [45]615

√
8πMpc

2 ≡MPDG
p c2 = 1.2209 1019 GeV . (1.7)

The difference between the “two bangs” due to the different time scales involved is616

difficult to resolve. The evolution of the Universe is slow on the hadronic reaction time617

scale. Given the value of characteristic τU we obtained, we expect that practically618

all unstable hadronic particles evolve to fully attain equilibrium, with ample time619

available to develop a ‘mixed phase’ of QGP and hadrons, and for electromagnetic and620

even weak interactions to take hold generating complete particle equilibrium. All this621

can not occur during the life span of the dense matter created in relativistic nuclear-622

collisions. To understand the Universe based on laboratory experiments running at a623

vastly different time scale we must therefore use theoretical models as developed in624

this report.625

There are other notable differences between the laboratory fireball and the cosmic626

primordial plasma: The early quark-hadron Universe was practically baryon free, the627

asymmetry level was and remains at 10−9, comparing the net (less antibaryon) baryon628

number to cosmic backgrounds of remnant particles. In the laboratory micro-bang at629

highest CERN-LHC energy we create a fireball of dense matter with a net baryon630

number per total final particle multiplicity at a fraction of a percent. This matter-631

antimatter-abundance asymmetry between laboratory and primordial Universe is eas-632

ily overcome theoretically, since it implies a relatively minor extrapolation, any small633

abundance of baryons can be an experimental diagnostic signal for QGP but not a634

key feature of the matter produced.635

Can QGP be discovered experimentally?636

This takes us right to the question: Can we really tell apart in these explosive ultra637

relativistic heavy-ion experiments the two different phases of strongly interacting638

matter, the deconfined quark gluon plasma and ‘normal’, confined strongly interacting639

matter? Existence of these two distinct phases is a new paradigm that superseded640
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the Hagedorn singularity at the Hagedorn temperature. In laboratory, the outcome of641

ultra-relativistic heavy-ion collisions seems to be very much the same irrespective of642

the applicable paradigm, we achieve the conversion of the kinetic energy of colliding643

nuclei into many material particles. So is there really transient deconfined QGP phase644

formed in relativistic heavy collisions? This question haunted this field of research for645

decades [31,46], a topic which is not addressed in this work beyond the following few646

words:647

When one of us (JR) first arrived at CERN in 1977, he found himself immersed648

into ardent discussions about both what the structure of the hot primordial Universe649

could be, and if indeed we could figure out how to find the answer in an experiment:650

Was the Universe perhaps a dense baryon-antibaryon singular Hagedorn universe?651

Or was indeed the confinement condition not really retained at high temperature [40,652

41,42]? And above all, how can we tell these models apart doing laboratory experi-653

ments? By 1979 it became clear that new experimental ideas and a new observable was654

needed, sensitive to specific properties of the dense deconfined hot matter if formed655

in experiments. Strange antibaryon enhancement was one of the proposed novel ap-656

proaches and in the opinion of one of us (JR), this was to be later the decisive QGP657

discovery evidence [33].658

1.2 Concepts in statistical physics659

We now recall the fundamental statistical physics concepts necessary to explore the660

properties of the Universe during its ’first hour’. In the case of local thermal equi-661

librium likely to prevail in the expanding Universe, the laws of thermodynamics can662

provide a framework for understanding the behavior of particle’s energy density, pres-663

sure, number density and entropy.664

We will address the general Fermi and Bose distributions and its application in the665

primordial Universe, as well as the cases of special interest to thermodynamics in the666

primordial Universe. We describe partial freeze-out conditions i.e. rise of the chemical667

nonequilibrium abundance while kinetic scattering equilibrium is maintained, and the668

case of free streaming particles, allowing for switching from radiation like to massive669

nonrelativistic condition. In following we use natural units c = ℏ = kB = 1. While670

we have shown before explicitly c and ℏ, we have measured temperature in units of671

energy, thus implicitly taking kBT → T , i.e. kB = 1.672

Quantum statistical distributions673

In the primordial Universe, the reaction rates of particles in the cosmic plasma were674

much greater than the Universe expansion rate H. Therefore, the local thermal equi-675

librium was in general maintained. Assuming the particles are in thermal equilib-676

rium, the dynamical information about local energy density can be estimating using677

he single-particle quantum statistical distribution function. The general relativistic678

covariant Fermi/Bose momentum distribution can be written as679

fF/B(Υi, pi) =
1

Υ−1i exp [(u · pi − µi)/T ]± 1
(1.8)

where the plus sign applies for fermions, and the minus sign for bosons. The Lorentz680

scalar (ui · pi) is a scalar product of the particle four momentum pµi with the local681

four vector of velocity uµ. In the absence of local matter flow, the local rest frame is682

the laboratory frame683

uµ =
(
1, 0⃗
)
, pµi = (Ei, p⃗i) . (1.9)
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The parameter Υi is the fugacity of a given particle characterizing the pair den-684

sity, it is the same for both particles and antiparticles. For Υi = 1 the distribution685

maximizes the entropy content at a fixed particle energy, this maximum is not very686

pronounced [47]. The parameter µi is the chemical potential for a given particle which687

is associated to the density difference between particles and antiparticles.688

Chemical equilibrium689

In general there are two types of chemical equilibrium associated with the chemical690

parameters Υ and µ each. We have:691

– Absolute chemical equilibrium: The absolute chemical equilibrium is the level to692

which energy is shared into accessible degrees of freedom, e.g. the particles can693

be made as energy is converted into matter. The absolute equilibrium is reached694

when the phase space occupancy approaches unity Υ → 1.695

– Relative chemical equilibrium: The relative chemical equilibrium is associated with696

the chemical potential µ which involves reactions that distribute a certain already697

existent element/property among different accessible compounds.698

The dynamics of absolute chemical equilibrium, in which energy can be converted to699

and from particles and antiparticles, is especially important. The consequences for700

the energy conversion to from particles/antiparticle can be seen in the first law of701

thermodynamics by introducing the chemical potential µN for particle and µN̄ for702

antiparticle as follows:703

µN ≡ µ+ T lnΥ, µN̄ ≡ −µ+ T lnΥ. (1.10)

Then the first law of thermodynamics can be written as704

dE = −PdV + TdS + µNdN + µN̄dN̄ (1.11)

= −PdV + TdS + µ(dN − dN̄) + T lnΥ (dN + dN̄). (1.12)

Here the chemical potential µ is the energy required to change the difference between705

particles and antiparticles, and T lnΥ is the energy required to change the total706

number of particle and antiparticle; the fugacity Υ is the parameter allowing to adjust707

this energy.708

Boltzmann equation and particle freeze-out709

The Boltzmann equation describes the evolution of the distribution function f in710

phase space. General properties of the Boltzmann-Einstein equation in an arbitrary711

spacetime are explored in Sec. 3.2. The Boltzmann equation in the FLRW universe712

takes the Einstein-Vlasov form713

∂f

∂t
−
(
E2 −m2

)
E

H
∂f

∂E
=

1

E

∑
i

Ci[f ] , (1.13)

where H = ȧ/a is the Hubble parameter, Eq. (1.39), see Sec. 1.3 below for more714

detailed cosmology primer. Due to homogeneity and isotropy of the Universe, the715

distribution function depends on time t and energy E =
√
p2 +m2 only. The collision716

term
∑

i Ci represents all elastic and inelastic interactions and the index i labels the717

corresponding physical process. In general, the collision term is proportional to the718

relaxation time for given collision as follows [48]719

1

E
Ci[f ] ∝

1

τrel
, (1.14)
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where τrel is the relaxation time for the reaction, which characterizes the magnitude720

of reaction time to reach chemical equilibrium.721

As the Universe expands, the collision term in the Boltzmann equation competes722

with the Hubble term. In general, a given particle freezes-out from the cosmic plasma723

when its interaction rate τ−1rel becomes smaller than the Hubble expansion rate724

H ⩾ τ−1rel . (1.15)

When this happens, the particle’s interactions are not rapid enough to maintain725

thermal distribution, either because the density of particles becomes so low that the726

chances of any two particles meeting each other becomes negligible, or because the727

particle energy becomes too low to interact. The freeze-out process can be categorized728

into three distinct stages based on the type of freeze-out interactions, we have [26,1]:729

– Chemical freeze-out: As the Universe expands and the temperature drops, the rate730

of the inelastic scattering (e.g. production and annihilation reaction) that maintain731

the equilibrium density becomes smaller than the expansion rate. At this point, the732

inelastic scattering ceases, and a relic population of particles remain. Prior to the733

chemical freeze-out temperature, number changing processes are significant and734

keep the particle in thermal equilibrium, implying that the distribution function735

has the usual Fermi-Dirac form736

fch(t, E) =
1

exp[(E − µ)/T ] + 1
, for T (t) > Tch. (1.16)

where Tch represents the chemical freeze-out temperature.737

– Kinetic freeze-out: After chemical freeze-out, at yet lower temperature inn expand-738

ing Universe particles still scatter elastically from other particles and keep thermal739

equilibrium in the primordial plasma. As the temperature drops, the rate of elas-740

tic scattering reaction that maintain the thermal equilibrium become smaller than741

the expansion rate. At that time, elastic scattering processes cease, and the relic742

particles do not interact with other particles in the primordial plasma anymore,743

they free-stream.744

Once chemical freeze-out takes hold, the distribution function has the kinetic745

equilibrium form with pair abundance typically below maximum yield Υ ≤ 1746

fF(t, E) =
1

Υ−1 exp[(E − µ)/T ] + 1
, for TF < T (t) < Tch, (1.17)

where TF represents the kinetic freeze-out temperature. The generalized fugacity747

Υ (t) controls the occupancy of phase space and is necessary once T (t) < Tch in748

order to conserve particle number.749

– Free streaming: After kinetic freeze-out, all particles have fully decoupled from the750

primordial plasma, and thereby ceased influencing the dynamics of the Universe751

and become free-streaming. The Einstein-Vlasov momentum evolution equation752

can be solved [49] and the free-streaming momentum distribution can be written753

as [26]754

ffs(t, E) =
1

Υ−1 exp
[√

E2−m2

T 2
fs

+ m2

T 2
F
− µ

TF

]
+ 1

, Tfs(t) =
TFa(tk)

a(t)
, (1.18)

where the free-streaming effective temperature Tfs is obtained by redshifting the755

temperature at kinetic freeze-out. If a massive particle (e.g. dark matter) freeze-756

out from cosmic plasma in the nonrelativistic regime, m ≫ TF. We can use the757
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Boltzmann approximation, and the free-streaming distribution for nonrelativistic758

particle becomes759

fBfs (t, p) = Υ e−(m+µ)/TF exp

[
− 1

Teff

p2

2m

]
, Teff =

(
a(tF)

a(t)

)2

TF, (1.19)

where we define the effective temperature Teff for massive free-streaming particle.760

In this scenario, the effective temperature for massive particles decreases faster761

than the Universe temperature cools. It’s worth emphasizing the different temper-762

atures between cold free-streaming particles and hot cosmic plasma would affect763

the evolution of the primordial Universe and require more detailed study.764

The division of the freeze-out process into these three regimes is a simplification765

of much more complex overlapping dynamical processes. It is, however, a very useful766

approximation in the study of cosmology [50,1,21,26].767

Particle content of the Universe768

Our detailed understanding of the primordial Universe arises from half a century769

of research in the fields of cosmology, ultra relativistic heavy-ion collisions, particle,770

nuclear and plasma physics. We believe today that the primordial deconfined matter771

we call quark-gluon plasma (QGP) filled the entire Universe and lasted for about772

first 20µs after the Big-Bang Eq. (1.4). The deconfined condition allows free motion773

of quarks and gluons along with all other elementary particles.774

This hot primordial particle soup filled the expanding Universe as long as it was775

well above hadronization Hagedorn temperature TH ≃ 150MeV. Well below T ≪776

TH the Universe contained all the building blocks of the usual matter that today777

surrounds us, and, and depending on temperature, many other elementary matter778

particles. The total particle inventory thus includes779

– The up u and down d quarks now hidden in protons and neutrons;780

– Electrons, three types (flavors) of neutrinos;781

There were also unstable particle present which can decay but are reformed in hot782

universe:783

– Heavy unstable leptons muon µ and tauon τ ;784

– Unstable when bound in present day matter strange s, and heavy charm c and785

bottom b quarks;786

At yet higher temperatures unreachable in laboratory experiments today we en-787

counter all the remaining much heavier standard model particles:788

– Electroweak theory gauge bosons W± and Z0, the top t quark, and the Higgs789

particle H.790

– The QGP phase of matter contains also the gluons, particles mediating the strong791

interaction of deconfined quarks.792

Using the relativistic covariant Fermi/Bose momentum distribution, the corre-793

sponding energy density, pressure, and number densities for particle species i are794
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given by795

ρi = gi

∫
d3p

(2π)3
EfF/B =

gi
2π2

∫ ∞
mi

dE
E2
(
E2 −m2

i

)1/2
Υ−1i e(E−µi)/T ± 1

, (1.20)

Pi = gi

∫
d3p

(2π)3
p2

3E
fF/B =

gi
6π2

∫ ∞
mi

dE

(
E2 −m2

i

)3/2
Υ−1i e(E−µi)/T ± 1

, (1.21)

ni = gi

∫
d3p

(2π)3
fF/B =

gi
2π2

∫ ∞
mi

dE
E(E2 −m2

i )
1/2

Υ−1i e(E−µi)/T ± 1
, (1.22)

where gi is the degeneracy of the particle species ‘i’. Inclusion of the fugacity pa-796

rameter Υi allows us to characterize particle properties in chemical nonequilibrium797

situations. Given the energy density, pressure, and number densities, the entropy798

density for particle species i can be written as799

σi =
Si

V
=

(
ρi + Pi

T
− µi

T
ni

)
. (1.23)

Once full decoupling is achieved, the corresponding free-streaming energy density,800

pressure, number density and entropy arising from the solution of the Boltzmann-801

Einstein equation differ from the thermal equilibrium Eq. (1.20), Eq. (1.21), Eq. (1.22),802

and Eq. (1.23) by replacing the mass by a time dependant effective mass mTfs(t)/TF803

in the exponential, and other related changes which will be derived in Sec. 3.3, see804

Eq. (3.82), Eq. (3.83), Eq. (3.84), and Eq. (3.85). Once decoupled, the free streaming805

particles maintain their comoving number and entropy density, see Eq. (3.86).806

In general the chemical potential is associated with the baryon number. The net807

baryon number density relative to the photon number density is near to 10−9. In808

many situations we can neglect the small chemical potential when calculating the809

total entropy density in the Universe. The total entropy density in the primordial810

Universe can be written as811

σ =
∑
i

σi =
2π2

45
gs∗ T

3, (1.24)

gs∗ =
∑

i=bosons

gi

(
Ti
Tγ

)3

B

(
mi

Ti

)
+

7

8

∑
i=fermions

gi

(
Ti
Tγ

)3

F

(
mi

Ti

)
, (1.25)

where gs∗ counts the effective number of ‘entropy’ degrees of freedom. The functions812

B(mi/T ) and F (mi/T ) are defined as813

B
(mi

T

)
=

45

12π4

∫ ∞
mi/T

dx

√
x2 −

(mi

T

)2 [
4x2 −

(mi

T

)2] 1

Υ−1i ex − 1
, (1.26)

F
(mi

T

)
=

45

12π4

8

7

∫ ∞
mi/T

dx

√
x2 −

(mi

T

)2 [
4x2 −

(mi

T

)2] 1

Υ−1i ex + 1
. (1.27)

In Fig. 2 we show gs∗ as a function of temperature, the effect of particle mass thresh-814

old [51] is considered in the calculation for all considered particles. When T decreases815

below the mass of particle T ≪ mi, this particle species becomes nonrelativistic816

and the contribution to gs∗ becomes negligible, creating the smooth dependence on T817

across mass threshold seen in Fig. 2: The vertical lines identify particle mass thresh-818

olds on temperature axis, me = 0.511MeV, mµ = 105.6MeV, and pion average mass819

mπ ≈ 138MeV.820
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Fig. 2. The entropy degrees of freedom as a function of T in the primordial Universe epoch
after hadronization 10−2 MeV ⩽ T ⩽ 150MeV. Adapted from Ref. [5].

Departure from detailed balance821

A well known textbook result for the case of two particle scattering is that the Boltz-822

mann scattering term, the right hand side in Eq. (1.13), vanishes when particles reach823

thermal equilibrium: The rates of the forward and reverse reactions are equal, result-824

ing in a balance between production and annihilation of particles. Such a balance825

is called detailed balance. Thermal equilibrium implies both chemical equilibrium826

(particle abundances are balanced) and kinetic equilibrium (equipartition of energy827

according to the equilibrium distributions).828

Kinetic equilibrium is usually established much quicker by means of scattering829

processes not capable to generate particles, thus approach to kinetic equilibrium often830

has little impact on the actual particle abundances, that is, on chemical equilibrium.831

Chemical nonequilibrium is often driven by time dependence of the environment in832

which particles evolve, for example in Eq. (1.13) by the Hubble parameter H(t) term.833

The well studied example is the emergence in BBN era of light isotope abundances834

dependent on the speed of Universe expansion [52,53,54,55].835

In elementary particle context the competition is often between elementary pro-836

cesses and not so much with the Hubble expansion This can lead to stationary popula-837

tion in detailed balance not in chemical equilibrium, with the actual value of particle838

fugacity determined by reaction dynamics for a fixed ambient temperature. In the839

primordial Universe a particle abundance can be in detailed balance and yet not in840

chemical equilibrium. We will investigate this type of nonequilibrium situation in the841

primordial Universe for bottom quarks in Sec. 2.3 and strange quarks in Sec. 2.4.842

There are thus two environments in the primordial Universe in which we can843

expect chemical nonequilibrium to arise:844

1. The particle production rate becomes slower than the rate of Universe expansion845

and the production reaction freeze-out. Once the production reactions freeze-out846

from the cosmic plasma, the corresponding detailed balance is broken. In the847
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case of unstable particles their abundance decrease via the decay/annihilation848

reactions.849

2. The nonequilibrium can also be achieved when the production reaction slows down850

and is not able to keep up with decay/annihilation reaction. In this case, the Hub-851

ble expansion rate can be much longer than the decay and production rate and is852

not relevant to the nonequilibrium process. The key factor is competition between853

production and decay/annihilation which can result in chemical nonequilibrium854

in the primordial Universe in which detailed balance is maintained.855

The chemical nonequilibrium conditions in the primordial Universe are of general856

interest: they are understood to be prerequisite for the arrow of time to take hold in857

the expanding Universe.858

1.3 Cosmology Primer859

We present now a short review of the Universe dynamics within the FLRW cosmology860

which will be useful throughout this work. Our objective is to recognize and identify861

markers clarifying and quantifying the different eras. This section unlike the remainder862

of the work relies on ΛCDM model of cosmology which leads to the results seen863

in Fig. 1.1 obtained with a pie-chart energy content of the contemporary universe864

comprising: 69% dark energy, 26% dark matter, 5% baryons, and < 1% photons and865

neutrinos in energy density [56,37].866

As noted earlier, for most part our results will remain valid if one day this model867

evolves to account for tensions in modeling current Universe Hubble expansion. This868

is so since our work applies to the primordial Universe period where neither dark869

energy nor dark matter is relevant, expansion of the Universe is driven nearly solely870

by radiation and matter-antimatter content and unknown properties of neutrinos do871

not contribute.872

About cosmological sign conventions873

There are several sign conventions in use in general relativity. As discussed by Hobson,874

Efstathiou and Lasenby [57], these conventions differ by three sign factors S1, S2,875

S3, which appear in the following objects:876

Metric Signature:877

ηµν = (S1)Diag(1,−1,−1,−1) (1.28a)

Riemann Tensor:878

Rµ
αβγ = (S2)(∂βΓ

µ
αγ − ∂γΓ

µ
αβ + Γµ

σβΓ
σ
γα − Γµ

σγΓ
σ
βα) (1.28b)

Einstein Equation:879

Gµν = (S3)8πGNTµν (1.28c)

Ricci Tensor:880

Rµν = (S2)(S3)Rα
µαν (1.28d)

The sign S3 comes from the choice of what index is contracted in forming the Ricci881

tensor. Since that sign factor appears in both Rµν and R it affects the overall sign of882
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Gµν and therefore Einstein’s equation as shown above (here the cosmological constant883

is considered part of Tµν). In this work we will use the884

{(S1), (S2), (S3)} = (+,+,+) (1.29)

convention.885

FLRW Cosmology886

The Friedmann-Lemâıtre-Robertson-Walker (FLRW) line element and metric [57,58,887

59,60] in spherical coordinates is888

ds2 = dt2 − a2(t)
[

dr2

1− kr2
+ r2dθ2 + r2 sin θ2dϕ2

]
, (1.30)

gαβ =


1 0 0 0

0 − a2(t)

1− kr2
0 0

0 0 −a2(t)r2 0
0 0 0 −a2(t)r2 sin θ2

 . (1.31)

The Gaussian curvature k informs the spatial hyper-surfaces defined by comoving ob-889

servers. The spatial shape of the universe has the following possibilities [37]: infinite890

flat Euclidean (k = 0), finite spherical but unbounded (k = +1), or infinite hyper-891

bolic saddle-shaped (k = −1). Observation indicates our universe is flat or nearly so.892

Current observation of cosmic microwave background (CMB) anisotropy imply the893

preferred value k = 0 [37,61,62].894

In an expanding (or contracting) universe which is both homogeneous and isotropic,895

the scale factor a(t) denotes the change of proper distances L(t) over time as896

L(t) = L0
a0
a(t)

→ L(z) = L0(1 + z) , (1.32)

where z is the redshift and L0 the comoving length. This implies volumes change897

with V (t) = V0/a
3(t) where V0 = L3

0 is the comoving Cartesian volume. In terms898

of temperature, we can consider the expansion to be an adiabatic process [63] which899

results in a smooth shifting of the relevant dynamical quantities. As the universe900

undergoes isotropic expansion, the temperature decreases as901

T (t) = T0
a0
a(t)

→ T (z) = T0(1 + z) , (1.33)

where z is the redshift. The entropy within a comoving volume is kept constant until902

gravitational collapse effects become relevant. The comoving temperature T0 is given903

by the the present CMB temperature T0 = 2.726 K ≃ 2.349 × 10−4 eV [37], with904

contemporary scale factor a0 = 1.905

The cosmological dynamical equations describing the evolution of the Universe906

follow from the Einstein equations. In general, the Einstein equation with cosmological907

constant Λ can be written as:908

Gµν − Λgµν =
ℏc

c4M2
p

Tµν , Gµν = Rµν − R

2
gµν , R = gµνR

µν , (1.34)

The space curvature R has dimension 1/Length2 and the energy momentum tensor909

energy/Length3, all units are maintained by factors ℏ and c. However, as before we910

will often omit to state explicitly factors ℏ or c.911
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Recall that the Einstein tensor Gµν is divergence free and so is the stress energy912

tensor, Tµν . In a homogeneous isotropic spacetime, the matter content is necessarily913

characterized by two quantities, the energy density ρ and isotropic pressure P914

Tµ
ν = diag(ρ,−P,−P,−P ). (1.35)

It is common to absorb the Einstein cosmological constant Λ into ρ and P by defining915

dark energy components916

ρΛ =M2
pΛ, PΛ = −M2

pΛ. (1.36)

We implicitly consider this done from now on.917

As the universe expands, redshift (referring verbally to the increase in de Broglie918

wavelength λdB = ℏ/p) reduces the momenta p of particles, thus lowering their con-919

tribution to the energy content of the universe. This cosmic momentum redshift is920

written as921

pi(t) = pi,0
a0
a(t)

. (1.37)

Momentum (and the energy of massless particles E = pc) scales with the same factor922

as temperature. Since mass does not evolve in time,the energy of massive free particles923

in the universe scales differently based on their momentum (and thus temperature).924

Only hot and relativistic, particle energy decreases inversely with scale factor like925

radiation. As the particles transition to nonrelativistic (NR) energies, they decrease926

with the inverse square of the scale factor927

E(t) = E0
a0
a(t)

NR−−→ E0
a20
a(t)2

. (1.38)

This occurs because of the functional dependence of energy on momentum in the928

relativistic E ∼ p versus nonrelativistic E ∼ p2 cases.929

Hubble parameter and deceleration parameter930

The global Universe dynamics can be characterized by two quantities, the Hubble931

parameter H(t), a strongly time dependent quantity on cosmological time scales, and932

the deceleration parameter q,933

H(t) ≡ ȧ

a
, (1.39)

934

q ≡ −aä
ȧ2

. (1.40)

We note the resulting relations935

ä

a
= −qH2, (1.41)

936

Ḣ = −H2(1 + q) . (1.42)

937

Two dynamically independent equations arise using the metric Eq. (1.30) in the938

Einstein equation Eq. (1.34)939

8πGN

3
ρ =

ȧ2 + k

a2
= H2

(
1 +

k

ȧ2

)
,

4πGN

3
(ρ+ 3P ) = − ä

a
= qH2. (1.43)
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These are also known as the Friedmann equations.940

There is a simple way to determine dependence of q on Universe structure and941

dynamics: We can eliminate the strength of the interaction, GN , by solving the equa-942

tions Eq. (1.43) for 8πGN/3 and equating the two results to find a relatively simple943

constraint for the deceleration parameter944

q =
1

2

(
1 + 3

P

ρ

)(
1 +

k

ȧ2

)
. (1.44)

From this point on, we work within the flat cosmological model with k = 0. It is good945

to recall that one must always satisfy the constraint on H introduced by the first946

of the Friedmann equations Eq. (1.43), which for k=0, flat Universe is the Hubble947

equation, Eq. (1.5).948

The parameter q and thus time evolution of H according to Eq. (1.42) is deter-949

mined entirely within the FLRW cosmological model by the matter content of the950

Universe951

q =
1

2

(
1 + 3

P

ρ

)
. (1.45)

We note that in FLRW Universe according to Eq. (1.41) the second derivative of952

scale parameter a changes sign when the sign of q changes: the Universe decelerates953

(hence name of q > 0) initially slowing down due to gravity action. The Universe954

will reverse this and accelerate under influence of dark energy as q changes sign. even955

so, the Hubble parameter according to Eq. (1.45) keeps its sign since even when dark956

energy dominates we approach asymptotically q = −1, that is according to Eq. (1.36)957

P = −ρ. In the dark energy dominated Universe pressure approaches this condition958

without ever reaching it as normal matter remains within the Universe inventory: In959

the FLRW Universe Ḣ = 0 is impossible, H(t) is continuously decreasing in its value,960

we cannot have a minimum in the value of H.961

Universe dynamics and conservation laws962

In a flat FLRW universe, the spatial components of the divergence of the stress energy963

tensor automatically vanish, leaving the single condition964

∇µT µ0 = ρ̇+ 3 (ρ+ P )
ȧ

a
= 0 . (1.46)

If the set of particles can be portioned into subsets such that there is no interaction965

between the different subsets then this condition applies independently to each and966

leads to an independent temperature for each such subset. We will focus on a single967

such group and use Eq. (1.46) to derive an equivalent condition involving entropy and968

particle number, which illustrate how the entropy of the universe evolves in time.969

Consider a collection of particles in kinetic equilibrium at a common temperature970

T , with distinct fugacity Υi, and which satisfy Eq. (1.46). For the following derivation,971

it is useful to define µi = σiT . This gives the expressions a familiar thermodynamic972

form with µ playing the role of chemical potential and helps with the calculations, but973

should not be confused with a chemical potential as discussed above. The expressions974

for the energy density, pressure, number density, and entropy density of a particle of975
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mass m with momentum distribution f are976

ρ =
gp

(2π)3

∫
f(t, p)Ed3p , E =

√
m2 + p2 , (1.47)

P =
gp

(2π)3

∫
f(t, p)

p2

3E
d3p , (1.48)

n =
gp

(2π)3

∫
f(t, p)d3p , (1.49)

s =− gp
(2π)3

∫
(f ln(f)± (1∓ f) ln(1∓ f))d3p , (1.50)

where gp is the degeneracy of the particle.977

Integration by parts establishes the following identities when f = fi is the kinetic978

equilibrium distribution Eq. (3.76) for the i’th component:979

si =
∂Pi

∂T
= (Pi + ρi − µini)/T, ni =

∂Pi

∂µi
. (1.51)

Combining Eq. (1.46) with the identities in Eq. (1.51) we can obtain the rate of change980

of the total comoving entropy as follows. Letting s =
∑

i si be the total entropy981

density, first compute982

1

a3
d

dt
(a3sT ) =

1

a3
d

dt

(
a3

(
P + ρ−

∑
i

µini

))
(1.52)

= Ṗ + ρ̇−
∑
i

(µ̇ini + µiṅi) + 3

(
P + ρ−

∑
i

µini

)
ȧ/a

=
∂P

∂T
Ṫ +

∑
i

∂Pi

∂µi
µ̇i −

∑
i

(µ̇ini + µiṅi + 3µiniȧ/a) +∇µT µ0

= sṪ −
∑
i

(µiṅi + 3µiniȧ/a)

= sṪ − a−3
∑
i

µi
d

dt
(a3ni) .

Therefore we find983

d

dt
(a3s) =

1

T

d

dt
(a3sT )− a3s Ṫ

T
= −

∑
i

σi
d

dt
(a3ni) . (1.53)

From this we can conclude that comoving entropy in conserved as long as each particle984

satisfies one of the following conditions:985

1. The particle is in chemical equilibrium, i.e., σi = 0;986

2. The particle has frozen out chemically and thus has conserved comoving particle987

number, i.e., d
dt (a

3ni).988

Therefore, under the instantaneous freeze-out assumption, we can conclude conserva-989

tion of comoving entropy.990

These observations provide an alternative characterization of the dynamics of a991

FLRW universe that is composed of entirely of particles in chemical or kinetic equi-992

librium. The dynamical quantities are the scale factor a(t), the common temperature993

T (t), and the fugacity of each particle species Υi(t) that is not in chemical equilibrium.994
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The dynamics are given by the Einstein equation, conservation of the total co-995

moving entropy of all particle species, and conservation of comoving particle number996

for each species not in chemical equilibrium (otherwise Υi = 1 is constant),997

H2 =
ρtot
3M2

p

,
d

dt
(a3s) = 0 ,

d

dt
(a3ni) = 0 when Υi ̸= 1 . (1.54)

We emphasize here that ρtot is the total energy density of the Universe, which may998

be composed of contributions from multiple particle groupings with cross group in-999

teractions being absent. In such case, each grouping has its own temperature and1000

independently conserves its comoving entropy.1001

1.4 Dynamic Universe1002

Eras of the Universe1003

The dynamic Universe is governed by the total pressure and energy content: For1004

the energy content ρ = ρtotal we have the sum of all contributions from any form of1005

matter, radiation, particle or field. This includes but is not limited to: dark energy1006

(Λ), dark matter (DM), baryons (B), leptons (ℓ, ν) and photons (γ). The same remark1007

applies to pressure P . Depending on the age of the universe, the relative importance1008

of each particle group changes as each dilutes differently under expansion, with dark1009

energy remaining constant, thus emerging in relative importance and accelerating the1010

expansion of the aging Universe today.1011

It turns out that q, the acceleration-deceleration parameter Eq. (1.45) is a very1012

convenient tool to characterize the different epochs of the Universe [23]. q is for1013

historical reasons positive under deceleration q > 0. Conversely, accelerating Universe1014

has q < 0. This convention was chosen under the tacit assumption that the universe1015

should be decelerating, before the discovery of dark energy. The value of q for different1016

eras is found to be:1017

– Radiation dominated Universe:1018

P = ρ/3 =⇒ q = 1 . (1.55)

– (Nonrelativistic) Matter dominated Universe:1019

P ≪ ρ =⇒ q = 1/2 . (1.56)

– Dark energy (Λ) dominated Universe:1020

P = −ρ =⇒ q = −1 . (1.57)

The value of the deceleration parameter is thus according to Eq. (1.45) an indicator of1021

the transition between different eras of the Universe’s history: radiation dominated,1022

matter dominated and dark energy dominated with Universe switching to accelerating1023

expansion when q changes sign.1024

To illustrate the power of the era characterization in terms of the acceleration1025

parameter we survey its value considering the range of Universe evolution shown1026

in Fig. 3. The time span covered is in essence the entire lifespan of the Universe, but1027

on a logarithmic time scale there is a lot of room for interesting physics in the tiny1028

blip that happened before neutrino decoupling where on left the time axis begins.1029

On the left axis in Fig. 3 we see temperature T [eV] while on right axis (blue)1030

we see the deceleration parameter q. The horizontal dot-dashed lines show the pure1031

radiation-dominated value of q = 1 and the matter-dominated value of q = 1/2.1032
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Fig. 3. Deceleration parameter (blue lines, right hand scale) shows transitions in the compo-
sition of the Universe as a function of time. The left hand scale indicates the corresponding T ,
dashed is the lower value for neutrinos. Vertical lines indicate recombination and reionization
conditions. Adapted from Ref. [23].

The expansion in this era starts off as radiation-dominated. We see relatively long1033

transitions to matter-dominated domain starting around T = O(300 eV) and ending1034

at T = O(10 eV). The matter dominated Universe begins near recombination and1035

ends right at the edge of reionization. Thereafter begins the transition to a dark1036

energy dominated era which is in full swing already at T = O(1 eV). q changes sign1037

near to T = O(200meV). Today q = −0.5 indicates we are still in the midst of a1038

rapid transition to dark energy dominated regime.1039

The vertical dot-dashed lines in Fig. 3 show the time of recombination at T ≃1040

0.25 eV, when the Universe became transparent to photons, and reionization at T ≃1041

O(1meV), when hydrogen in the Universe was again ionized due to light from the first1042

galaxies [64] is also shown. The usefulness of q to predict present day value of Hubble1043

parameter is even better appreciated noting that we can easily integrate Eq. (1.42)1044

H(t) =
Hi

1 +Hi

∫ t

ti
(1 + q)dt

=
Hi

1 + 1.5Hi

∫ t

ti
(1 + P/ρ)dt

. (1.58)

Given an initial (measured) value Hi in an epoch after free electrons disappeared (re-1045

combination epoch) the time dependence of q or equivalently, P/ρ, see Fig. 3 impacts1046

the current epoch H(t0) = H0. The Hubble parameter H [s−1] (left ordinate, black)1047

and the redshift z (right ordinate, blue)1048

z + 1 ≡ a0
a(t)

, (1.59)
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Fig. 4. Temporal evolution of the Hubble parameter H (in units 1/s] (left hand scale) and
of redshift 1 + z (right hand scale, blue). Adapted from Ref. [23].

are shown in Fig. 4 spanning a wide ranging domain following on the domain of1049

interest in this work.1050

There is a visible deviation from a power law behavior in Fig. 4 due to the transi-1051

tions from radiation to matter dominated and from matter to dark energy dominated1052

expansion we saw in Fig. 3. To achieve an increase H in current epoch beyond what1053

is expected all it takes is to have the value of q a bit more negative, said differently1054

closer to being dark energy dominated altering the balance between matter, radiation1055

(neutrinos, photons) and dark energy. We conclude that it is important to understand1056

the particle content of the Universe which we used to construct these results in order1057

to understand the riddle of the Hubble value tension.1058

Relation between time and temperature1059

Considering the comoving entropy conservation, we have1060

S = σV ∝ gs∗T 3a3 = constant, (1.60)

where gs∗ is the entropy degree of freedom and a is the scale factor. Differentiating1061

the entropy with respect to time t we obtain1062 [
Ṫ

gs∗

dgs∗
dT

+ 3
Ṫ

T
+ 3

ȧ

a

]
gs∗T

3a3 = 0, Ṫ =
dT

dt
. (1.61)
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Fig. 5. The relation between time and temperature in the first hour of the Universe be-
ginning shortly before QGP hadronization 300MeV > T > 0.02MeV and ending with
antimatter disappearance. Temperature/time range for several epochs is indicated. Adapted
from Ref. [5].

The square bracket has to vanish. Solving for Ṫ we obtain1063

dT

dt
= − HT

1 + T
3gs

∗

d gs
∗

dT

. (1.62)

Taking the integral the relation between time and temperature in the primordial1064

Universe is obtained1065

t(T ) = t0 −
∫ T

T0

d T

T H

[
1 +

T

3gs∗

dgs∗
dT

]
, H =

√
8πGN

3
ρtot(T ) (1.63)

where T0 and t0 represent the initial temperature and time respectively. H = ȧ/a1066

is the Hubble parameter Eq. (1.39) related to the total energy density ρtot in the1067

Universe by the Hubble equation Eq. (1.5) restated for convenience. The temperature1068

derivative of the entropy degrees of freedom, g∗s seen in Fig. 2 allows us to obtain1069

a smooth time-temperature relation shown in Fig. 5. We are using here the particle1070

inventory in the Universe discussed earlier.1071

In Fig. 5 the black line presents the computed relation between time t [s] (ordinate,1072

increasing scale) and temperature T [MeV](abscissa, decreasing scale) during the first1073

hour of the evolution of the Universe, reaching down to the temperature T = 10 keV.1074

Vertical and horizontal lines indicate some characteristic epochal events related to1075

the Universe particle inventory, as marked.1076

In the temperature range we consider in this work, T > 0.02MeV particle-matter-1077

radiation content of the Universe is relevant. There is vanishing dependence on ΛCDM1078

model. However, in the contemporary Universe the ΛCDM model uncertainties re-1079

lated to the lack of understanding of ‘darkness’ and the need to know the pie-chart1080

composition of the Universe at least at one ‘initial’ time compound making in our1081
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view the direct measurements of H0 a value that the extrapolations from recombi-1082

nation epoch should aim to resolve, eliminating the Hubble tension. Such a current1083

epoch biased fit of data would provide as example the so called effective number of1084

neutrino degrees of freedom that we address further below, see Sec. 3.3.1085

Neutrinos in the cosmos1086

In the primordial Universe the neutrinos are kept in equilibrium with cosmic plasma1087

via the weak interaction processes, which at temperatures below O(∈′)MeV involve1088

predominantly the e+e−-pair plasma. However, as the Universe expands, these weak1089

interactions gradually became too slow to maintain equilibrium, neutrinos ceased1090

interacting and decouple from the cosmic background as we describe in this report in1091

detail in the temperature range T = 2.5± 1.5MeV.1092

According to theoretical models we and other have developed at around 1MeV1093

all neutrinos have stopped interacting. Neutrinos evolve as free-streaming particles1094

in the Universe responding only to gravitational background they co-create, as in-1095

dividual particles they are unlikely to interact again in the rapidly expanding and1096

diluting Universe. Today they are the relic neutrino background. We recall that pho-1097

tons become free-streaming much later, near to 0.25 eV and today they make up the1098

Cosmic Microwave Background (CMB), currently at a temperature Tγ,0 = 2.726K =1099

0.2349MeV.1100

The relic neutrino background carries important information about our primor-1101

dial Universe: If we ever achieve relic neutrino experimental observation we will be1102

observing our Universe when it was about 1 sec old. Since photons were reheated1103

by ensuing electron-positron annihilation, the neutrino relic background should have1104

a lower temperature and we show below T 0
ν ≃ 1.95K ≃ 0.168MeV in the present1105

epoch. The relic neutrinos have not been directly measured, but their impact on the1106

speed of expansion of the Universe is imprinted on the CMB. Indirect measurements1107

of the relic neutrino background, such as by the Planck satellite [37,61,62], constrain1108

to some degree in model dependent analysis the neutrino properties such as number1109

of massless degrees of freedom and a bound on mass.1110

We know that the the neutrinos are not massless particles and we return to dis-1111

cuss how this insight was gained. Their square mass difference ∆m2
ij has been deter-1112

mined [45]:1113

∆m2
21 = 73.9± 2MeV2, (1.64)

∆m2
32 = 2450± 30MeV2 . (1.65)

Thus neutrino mass values can be ordered in the normal mass hierarchy (m1 ≪ m2 <1114

m3) or inverted mass hierarchy (m3 ≪ m1 < m2).1115

All three mass states remained relativistic until the temperature dropped below1116

their rest mass. Today one of the neutrinos could be still relativistic. We will return1117

in Sec. 3.6 to discuss the relic massive neutrino flux in the Universe.1118

We will study the neutrino freeze-out temperature in the context of the kinetic1119

Boltzmann-Einstein equation for the three flavors, and refine the results by noting1120

that there are three different freeze-out processes for neutrinos:1121

1. Neutrino chemical freeze-out: the temperature at which neutrino number changing1122

processes such as e−e+ → νν effectively cease. After chemical freeze-out, there are1123

no reactions that, in a noteworthy fashion, can change the neutrino abundance1124

and so particle number is conserved.1125

2. Neutrino kinetic freeze-out: the temperature at which the neutrino momentum1126

exchanging interactions such as e±ν → e±ν are no longer occurring rapidly enough1127

to maintain an equilibrium momentum distribution.1128
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3. Collisions between neutrinos νν → νν are capable of re-equilibrating energy within1129

and between neutrino flavor families. These processes end at a yet lower temper-1130

ature and the neutrinos will be free-streaming from that point on.1131

To obtain the freeze-out temperature T = O(2.5±1.5MeV), we solve the Boltzmann-1132

Einstein equation including all required collision terms. We developed a new method1133

for analytically simplifying the collision integrals and showing that the neutrino freeze-1134

out temperature is controlled by one fundamental coupling constants and particle1135

masses. We give further discussion of these methods in Sec. 3.4. The required math-1136

ematical theory and numerical method is developed in Appendices A, B, and C.1137

Our report follows the comprehensive investigation of neutrino freeze-out found in1138

Jeremiah Birrell PhD thesis [2].1139

The freeze-out temperature we obtain depends only on the magnitude of the1140

symmetry breaking Weinberg angle sin2(θW ), and a dimensionless relative interaction1141

strength parameter η,1142

η ≡Mpm
3
eG

2
F , Mp ≡

√
1

8πGN
, (1.66)

a combination of the electron mass me, Newton constant GN (expressed above in1143

terms of Planck massMp, Eq. (1.6)), and the Fermi constant GF . These dimensionless1144

strength parameters in the present-day vacuum state have the following values1145

η0 ≡ Mpm
3
eG

2
F

∣∣
0
= 0.04421 , sin2(θW ) = 0.2312 . (1.67)

The magnitude of neither η nor of the Weinberg angle is fixed by known phe-1146

nomena. Therefore both the interaction strength η and sin2(θW ) could be subject to1147

variation as a function of time or temperature. Therefore it is of interest to study1148

the neutrino freeze-out as function of these parameters. The dependence of neutrino1149

freeze-out temperatures on η is shown in Fig. 6 and the dependence on the Weinberg1150

angle is shown in Fig. 7. The present day vacuum value of Weinberg angle puts the1151

νµ, ντ freeze-out temperature, seen in the bottom pane of Fig. 7, near its maximum1152

value.1153

We do not explore here the pivotal insight that Neutrinos in elementary processes1154

are not produced in mass eigenstates but in flavor eigenstates. Due to the differ-1155

ence in the three neutrino masses the propagating flavor eigenstates contain three1156

coherent amplitudes moving at different velocity. This leads to the experimentally1157

observed oscillation of neutrino flavor as function of travel distance. This is also how1158

the constraints on neutrino masses shown above were obtained.1159

How does this neutrino mixing impact neutrino freeze-out? We inspect our results1160

to understand the hierarchy of freeze-out: Near to freeze-out temperature the electron-1161

neutrino can still ‘annihilate’ on electrons while the absence of muons and taus in the1162

cosmic plasma at a temperature of a few MeV makes these two neutrino flavors1163

less interactive and their freeze-out temperature is higher. Oscillation thus provide1164

a mechanism in which the heavier flavors remain reactive in matter as they share1165

in the more interactive electron-neutrino component. Conversely, electron neutrino1166

interaction is weakened since only a part of this flavor wave remains available to1167

interact. The net effect was found negligible in the work of Mangano et. al. [50].1168

In regard to our results one can say that the differences in freeze-out between the1169

three different flavors diminishes allowing for oscillations. We chose not to quantify1170

this effect as the mixing of neutrino mass eigenstates into flavor eigenstates and neu-1171

trino masses remain a vibrant research field. Without knowing all the required input1172

parameters the outcome is uncertain. Given the results we obtained and methods we1173

developed we will be able once the neutrino mixing and masses are well understood1174

to update our results.1175
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Fig. 6. Freeze-out temperatures for electron neutrinos (top) and µ, τ neutrinos (bottom) for
the three types of processes, see insert, as functions of interaction strength η > η0. Published
in Ref. [19] under the CC BY 4.0 license
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Fig. 7. Freeze-out temperatures for electron neutrinos (top) and µ, τ neutrinos (bottom) for
three types of processes, see insert, as functions of the value of the Weinberg angle sin2(θW ).
Vertical line is at present epoch sin2(θW ) = 0.23. Published in Ref. [19] under the CC BY
4.0 license
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Fig. 8. The first hours in the lifespan of the Universe from the end of baryon antimatter
annihilation through BBN: Deceleration parameter q (blue line, right hand scale) shows
impact of emerging antimatter components; at millisecond scale anti-baryonic matter and
at 35 sec. scale positronic nonrelativistic matter appears. The left hand scale shows photon
γ temperature T in eV, dashed is the emerging lower value for neutrino ν which are not
reheated by e+e− annihilation. Vertical lines bracket the BBN domain. Published in Ref. [19]
under the CC BY 4.0 license. Adapted from Ref. [23]

A discussion of the implications and connections of the results on neutrino freeze-1176

out to other areas of physics, including BBN and dark radiation is described in more1177

detail in [65,66,67,19].1178

We now characterize the era 30 > T > 0.01MeV. At the high end muons and pions1179

are nonrelativistic and are disappearing from the Universe, we than pass through1180

neutrino decoupling and the era where e+e−-pairs become nonrelativistic. In Fig. 81181

the black line refers to left ordinate and shows the temperature as function of time,1182

dashed the lower value of T for free-streaming neutrinos. We further indicate in Fig. 81183

the domain of Big-Bang Nucleosynthesis (BBN) [68], the period when the lighter1184

elements were synthesized amidst of a e+e−-pair plasma, which is already reduced1185

in abundance but not entirely eliminated. This insight will keep us very busy in this1186

report.1187

The blue lines in Fig. 8 refer to right ordinate: The horizontal dot-dashed line for1188

q = 1 shows the pure radiation dominated value with two exceptions. In Fig. 8 the unit1189

of time is seconds and the range spans the domain from fractions of a millisecond to1190

a few hours. The just noted presence of massive pions and muons reduces the value1191

of q towards matter dominated near to the maximal temperature shown. Second,1192

when the temperature is near the value of the electron mass, the e+e−-pairs are1193

not yet fully depleted but already sufficiently nonrelativistic to cause another dip1194

in q towards matter dominated value. These dips in q are not large; the Universe1195

is still predominately radiation dominated. But q provides a sensitive measure of1196

https://creativecommons.org/licenses/by/4.0/
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when various mass scales become relevant and is therefore a good indicator for the1197

presence of a reheating period, where some particle population disappears and passes1198

its entropy to the thermal background.1199

Reheating history of the Universe1200

At times where dimensional scales are irrelevant, entropy conservation means that1201

temperature scales inversely with the scale factor a(t). This follows from the only1202

contributing scale being T and therefore by dimensional counting ρ ≃ 3P ∝ T 4.1203

However, as the temperature drops and at their respective m ≃ T scales, successively1204

less massive particles annihilate and disappear from the thermal Universe. Their1205

entropy reheats the other degrees of freedom and thus in the process, the entropy1206

originating in a massive degree of freedom is shifted into the effectively massless1207

degrees of freedom that still remain.1208

This causes the T ∝ 1/a(t) scaling to break down; during each of these ‘reorgani-1209

zation’ periods the drop in temperature is slowed by the concentration of entropy in1210

fewer degrees of freedom, leading to a change in the reheating ratio, R, defined as1211

R ≡ 1 + z

Tγ/Tγ,0
, 1 + z ≡ a0

a(t)
. (1.68)

The reheating ratio connects the photon temperature redshift to the geometric red-1212

shift, where a0 is the scale factor today (often normalized to 1) and quantifies the1213

deviation from the scaling relation between a(t) and T . There is additional Universe1214

expansion due to reheating of remaining degrees of freedom so that the total entropy1215

is conserved as entropy in particles decreases. This is Universe reheating inflation.1216

The change in R can be computed by the drop in the number of degrees of freedom1217

and we learn from this actual redshift 1 + z. For the just discussed era 30 > T >1218

0.01MeV we show in Fig. 9 in blue the value of 1+ z as function of time and in black1219

(left ordinate) the value of H[s−1]. It is interesting to observe that study of BBN1220

extends the range of redshift explored to 108 < 1 + zBBN < 109.1221

We are interested to determine by how much Universe inflated in addition to its1222

expected expansion in follow-up on particle disappearance from inventory. We begin1223

at the highest temperature to count the particle degrees of freedom: At a temperature1224

on the order of the top quark mass, when all standard model particles were in thermal1225

equilibrium, the Universe was pushed apart by 28 bosonic and 90 fermionic degrees1226

of freedom. The total number of degrees of freedom can be computed as follows.1227

For bosons we have the following: the doublet of charged Higgs particles has 4 =1228

2× 2 = 1+ 3 degrees of freedom – three will migrate to the longitudinal components1229

of W±, Z when the electro-weak vacuum freezes and the EW symmetry breaking1230

arises, while one is retained in the one single dynamical charge-neutral Higgs particle1231

component. In the massless stage, the SU(2)×U(1) theory has 4×2=8 gauge degrees1232

of freedom where the first coefficient is the number of particles (γ, Z,W±) and each1233

massless gauge boson has two transverse conditions of polarization. Adding in 8c ×1234

2s = 16 gluonic degrees of freedom we obtain 4+8+16=28 bosonic degrees of freedom.1235

The count of fermionic degrees of freedom includes three f families, two spins s,1236

another factor two for particle-antiparticle duality. We have in each family of flavors1237

a doublet of 2 × 3c quarks, 1-lepton and 1/2 neutrinos (due left-handedness which1238

was not implemented counting spin). Thus we find that a total 3f × 2p × 2s × (2 ×1239

3c + 1l + 1/2ν) = 90 fermionic degrees of freedom. We further recall that massless1240

fermions contribute 7/8 of that of bosons in both pressure and energy density. Thus1241

the total number of massless Standard Model particles at a temperature above the1242

top quark mass scale, referring by convention to bosonic degrees of freedom, is gSM =1243

28 + 90× 7/8 = 106.75 .1244
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Fig. 9. First hours in the evolution of the Universe: Hubble parameter H in units [1/s]
(left hand scale) and the redshift 1 + z (right hand scale, blue) spanning the epoch from
well below the end of baryon antimatter annihilation through BBN, compare Fig. 8. Adapted
from Ref. [23]. Published in Ref. [19] under the CC BY 4.0 license

In Fig. 10 we show the reheating ratio R Eq. (1.68) as a function of time beginning1245

in the primordial elementary particle Universe epoch on the left, connecting to the1246

present epoch on the right. The periods of change seen in Fig. 10 come when the evo-1247

lution temperature crosses the mass of a particle species that is in equilibrium. One1248

can see drops corresponding to the disappearance of thermal particle yields as indi-1249

cated. After e+e− annihilation on the right, there are no significant degrees of freedom1250

remaining to annihilate and feed entropy into photons, and so R remains constant1251

until today. We do not model in detail the QGP phase transition and hadronization1252

period near T ≃ O(150 MeV), t ≃ 20µs covering-up the resultant kinky connection.1253

A more precise model using lattice QCD, see e.g. [69], together with a high temper-1254

ature perturbative QCD expansion, see e.g. [30], can be considered. These complex1255

details do not impact this study and so we do not consider these issues further here.1256

As long as the microscopic local dynamics are at least approximately entropy con-1257

serving, the total drop in R is entirely determined by the global entropy conservation1258

governing expansion of the Universe based on FLRW cosmology. Namely, the magni-1259

tude of the drop in R seen in Fig. 10 is a measure of the number of degrees of freedom1260

that have disappeared from the Universe. Consider two times t1 and t2 at which all1261

particle species that have not yet annihilated are effectively massless. By conservation1262

of comoving entropy and scaling T ∝ 1/a we have1263

1 =
a31S1

a32S2
=
a31
∑

i giT
3
i,1

a32
∑

j gjT
3
j,2

,

(
R1

R2

)3

=

∑
i gi(Ti,1/Tγ,1)

3∑
j gj(Tj,2/Tγ,2)

3
(1.69)

https://creativecommons.org/licenses/by/4.0/
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where the sums are over the total number of degrees of freedom present at the indi-1264

cated time and the degeneracy factors gi contain the 7/8 factor for fermions. In the1265

second form we divided the numerator and denominator by a0Tγ,0. We distinguish1266

between the temperature of each particle species and our reference temperature, the1267

photon temperature. This is important since today neutrinos are colder than photons,1268

due to photon reheating from e+e− annihilation occurring after neutrinos decoupled1269

(this is only an approximation, a point we will study in detail in subsequent chapters).1270

By conservation of entropy one obtains the neutrino to photon temperature ratio of1271

Tν/Tγ = (4/11)1/3. (1.70)

We will call this the reheating ratio in the decoupled limit.1272

We now compute the total drop in R shown in Fig. 10. At T = Tγ = O(130GeV)1273

the number of active degrees of freedom is slightly below gSM = 106.75 due to the1274

partial disappearance of top quarks t which have mass 174 GeV, but this approxima-1275

tion will be good enough for our purposes. At this primordial time, all the species are1276

in thermal equilibrium with photons.1277

Today we have 2 photon and 7/8× 6 neutrino degrees of freedom and a neutrino1278

to photon temperature ratio Eq. (1.70). Therefore for the overall reheating ratio since1279

the primordial elementary particle Universe epoch we have1280 (
R100GeV

Rnow

)3

=
gSM

gnow
=

106.75

2 + 7
8 × 6× 4

11

≈ 27.3 (1.71)

which is the fractional change we see in Fig. 10. The meaning of this factor is that1281

the Universe approximately inflated by a factor 27 above the thermal redshift scale1282

as massive particles disappeared successively from the inventory.1283

Another view of the reheating is implicit in our presentation of particle energy1284

inventory in Fig. 1.1. There the initial highest temperature is on the right at the1285

end of the hadron era marked by the disappearance of muons and pions and other1286

heavier particles as marked. This constitutes a major reheating period, with energy1287

and entropy from these particles being transferred to the remaining e+e−, photon,1288

neutrino plasma. Continuing to T = O(1)MeV, we come to the annihilation of e+e−1289

and the photon reheating period. Notice that only the photon energy density fraction1290

increases here. As discussed above, a common simplifying assumption is that neutrinos1291

are already decoupled at this time and hence do not share in the reheating process,1292

leading to a difference in photon and neutrino temperatures Eq. (1.70).1293

After passing through a long period, from T = O(1)MeV until T = O(1) eV, where1294

the energy density is dominated by photons and free-streaming neutrinos, we then1295

come to the beginning of the matter dominated regime, where the energy density1296

is dominated by dark matter and baryonic matter. This transition is the result of1297

the redshifting of the photon and neutrino de Broglie wavelength and hence particle1298

energy, for relativistic particles ρ ∝ T 4, whereas for nonrelativistic matter ρ ∝ a−3 ∝1299

T 3. Note that our inclusion of neutrino mass causes the leveling out of the neutrino1300

energy density fraction during this period, as compared to the continued redshifting1301

of the photon energy.1302

Finally, as we move towards the present day CMB temperature of Tγ,0 = 0.2351303

meV on the left hand side, we have entered the dark energy dominated regime. For1304

the present day values, we have used the fits from the Planck data [37,61,62] of 69%1305

dark energy, 26% dark matter and 5% baryons (and zero spatial curvature). The1306

photon energy density is fixed by the CMB temperature Tγ,0 and the neutrino energy1307

density is fixed by Tγ,0 along with the photon to neutrino temperature ratio. Both1308

constitute < 1% of the current energy budget in the pie chart of the Universe.1309
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The baryon-per-entropy density ratio1310

An important result of the FLRW cosmology is that following on the era of matter1311

genesis both baryon and entropy content is conserved in the comoving volume, that is1312

the volume where length scales account for the Universe a(t) expansion scale param-1313

eter. Therefore the ratio of baryon number density to visible matter entropy density1314

remains constant throughout the evolution of the thermally equilibrated Universe.1315

Baryonic dust floating in the Universe dilutes due to volume growth with the a(t)31316

factor. The entropy described using the entropic degrees of freedom g∗s seen in Fig. 21317

scales overall with the third power of Temperature and thus with the third power of1318

the same expansion parameter, a(t)3. During the short epochs when mass matters1319

scattering allows the disappearing massive particles to transfer their entropy to the1320

remaining thermal background such that the scale parameter a(t) inflates in each1321

period of reheating, see prior discussion.1322

We have1323

nB − nB
σ

=
nB − nB

σ

∣∣∣∣
t0

= Const. (1.72)

The subscript t0 denotes the present day condition, and σ is the total entropy density.1324

The observation gives the present baryon-to-photon ratio [45] 5.8 × 10−10 ⩽ (nB −1325

nB)/nγ ⩽ 6.5× 10−10. This small value quantifies the matter-antimatter asymmetry1326

in the present day Universe, and allows the determination of the present value of1327

baryon per entropy ratio [33,29,27]:1328

nB − nB
σ

∣∣∣∣
t0

= η

(
nγ

σγ + σν

)
t0

= (8.69± 0.05)×10−11, η =
(nB − nB)

nγ
, (1.73)

where the η = (6.12± 0.04)× 10−10 [45] is used in calculation.1329

To obtain the above ratio, we have considered the Universe today to be containing1330

photons and free-streaming massless neutrinos [26], and σγ and σν are the entropy1331

densities for photon and neutrino respectively. We have1332

σν
σγ

=
7

8

gν
gγ

(
Tν
Tγ

)3

,
Tν
Tγ

=

(
4

11

)1/3

(1.74)

and the entropy-per-particle for massless bosons and fermions are given by [27]1333

s/n|boson ≈ 3.60 , s/n|fermion ≈ 4.20 . (1.75)

The evaluation of entropy of free streaming fluid in terms of effectively massless1334

maf/a(t) free-streaming particles (neutrinos) needs further consideration, as does1335

the free streaming particles entropy definition. We will return to consider these very1336

important questions in the near future.1337
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2 Quark and Hadron Universe1338

2.1 Heavy particles in QGP epoch1339

Matter phases in extreme conditions1340

This section will be focused on a few examples of interest to cosmological context. In1341

the temperature domain below electroweak boundary near T = 130GeV we explore1342

in preliminary fashion novel and interesting physical processes. We will consider the1343

Higgs, meson, and the heavy quarks t, b, c with emphasis on bottom quarks. We1344

will show that the bottom quarks can deviate from chemical equilibrium Υ ̸= 1 by1345

breaking the detailed balance between production and decay reactions. It is easy to see1346

considering temperature scaling and additional degrees of freedom that the energy1347

density of matter near to electroweak phase transition is a stunning 12 orders of1348

magnitude greater compared to the benchmark we discussed for QGP-hadronization,1349

see Eq. (1.2).1350

The dynamical bottom b, b̄-quark pair abundance depends on the competition1351

between the strong interaction two gluon fusion process into bb̄-pair and weak inter-1352

action decay rate of these heavy quarks. This lead to the off-equilibrium phenomenon1353

of the bottom quark freeze-out in abundance near the hadronization temperature as1354

discussed in Ref. [14] and below. Here we further argue that the same unusual situ-1355

ation could exist for any other heavy particle in QGP at a temperature well below1356

their mass scale. We study as an example the abundance of the Higgs particle at1357

condition mH ≫ T . Higgs is a particularly interesting case due to its special position1358

in the particle ZOO and a narrow width.1359

We also explore the properties of hadronic phase after hadronization with spe-1360

cial emphasis on gaining an understanding about the strangeness s, s̄ content of the1361

Universe which persists to unexpectedly low temperature. Many of the methods we1362

use in this context were developed in order to understand the properties of strongly1363

interacting QGP formed in relativistic i.e. high-energy heavy-ion i.e. nuclear collision1364

experiments. Such experimental program is in progress at the Relativistic heavy-ion1365

Collider (RHIC) at BNL-New York and the Large Hadron Collider (LHC) at CERN.1366

Let us remind the reasons why the dynamics of particles and plasma in the pri-1367

mordial Universe differs greatly from the laboratory environment. We focus here on1368

the case of QGP-hadron phase boundary but a similar tabular list applies to other1369

era boundaries:1370

1. The primordial Big-Bang QGP epoch lasts for about 20µs. On the other hand,1371

the QGP formed in collision micro-bangs has a lifespan of around 10−23 s.1372

2. In the primordial Universe the microscopic transformation of quarks into hadrons1373

proceeded through creation of the so called mixed phase allowing for local equi-1374

libration and a full relaxation of strongly interacting degrees of freedom during1375

about 10µs [29]. Current lattice QCD models predict a smooth transformation.1376

The transformation in the laboratory is much closer to what can be called explosive1377

and sudden conversion of quarks into hadronic (confined) degrees of freedom [70].1378

Such a situation can mimic phenomena usually observed in a true phase transition1379

of first order.1380

3. Half of the degrees of freedom present in the Universe (charged leptons, photons,1381

neutrinos) are not part of the thermal laboratory micro-bang.1382

4. Experimental reach today is at and below T ≃ 0.5GeV allowing to explore the1383

hadronization process of the QGP but not the heavy particle (H,W,Z,t) content,1384

b and c quarks are difficult to study.1385

5. Though the baryon content of the laboratory QGP is very low it is probably also1386

much higher compared to the observed baryon asymmetry in the Universe.1387
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Higgs equilibrium abundance in QGP1388

We would like to show that it is of interest to study the Higgs particle dynamics1389

at relatively late stage of Universe evolution. This is an ongoing project which is1390

described here for the first time. We are now considering in the primordial Universe1391

the temperature range 10GeV > T > 1GeV, and recall the mass of the Higgs particle1392

mH ≃ 125GeV. Therefore the number density of the Higgs can be written using the1393

relativistic Boltzmann approximation1394

nH =
ΥH
2π2

T 3
(mH

T

)2
K2(mH/T ) . (2.1)

1395

We are interested to compare the abundance of the Higgs particle to the net1396

abundance of baryon excess over antibaryons to determine at which temperature the1397

Higgs particle yield drops below this tiny Universe asymmetry. Our interest derives1398

from the question how far down in temperature a baryon number breaking Higgs decay1399

could be of relevance. Clearly, once the Higgs yield falls far below baryon asymmetry1400

it would be difficult to argue it can contribute to grow the baryon asymmetry in the1401

Universe. Moreover, comparing to baryon asymmetry seems to be a reliable measure1402

of more general physical relevance, after all, our present Universe structure derives1403

from this small asymmetry probably developed in the primordial epoch we explore1404

here.1405

The density between Higgs and baryon asymmetry (quark-antiquark asymmetry)1406

can be written as1407

nH
(nB − nB̄)

=
nH
stot

(
stot

nB − nB̄

)
=
nH
stot

[
sγ,ν

nB − nB̄

]
t0

. (2.2)

Assuming no ‘late’ baryon genesis and entropy conserving Universe expansion, we1408

introduce in Eq. (1.73) in the last equality the present day value of baryon per entropy1409

ratio. The entropy density stot in QGP can be obtained employing the entropic degrees1410

of freedom gs∗, Eq. (1.24) and Fig. 21411

stot =
2π2

45
gs∗T

3
γ , gs∗ =

∑
i=g,γ

gi

(
Ti
Tγ

)3

+
7

8

∑
i=l±,ν,u,d

gi

(
Ti
Tγ

)3

. (2.3)

The entropy content to a good approximation is dominated by all effectively massless1412

particles at given temperature in QGP.1413

The baryon-to-photon density ratio η today is bracketed by 5.8 × 10−10 ⩽ η ⩽1414

6.5 × 10−10 [71], a more precise value η = (6.12 ± 0.04) × 10−10 [45] is used in our1415

study. This observed value is the evidence of baryon asymmetry and quantifies the1416

matter-antimatter asymmetry in the Universe.1417

The density ratio between Higgs and baryon asymmetry for the case of chemical1418

equilibrium ΥH = 1 is seen in Fig. 11. At temperature T = 5.7GeV this ratio is equal1419

to unity. This implies that Higgs decay processes could populate and influence the1420

baryon asymmetry down to this relatively low temperature scale.1421

Baryon asymmetry and Sakhraov conditions1422

The small value of the baryon asymmetry in the Universe could be interpreted as1423

simply due to the initial conditions in the Universe. However, in the current standard1424

cosmological model, it is believed that the inflation event can erase any pre-existing1425

asymmetry between baryons and antibaryons. In this case, we need a dynamic baryo-1426

genesis process to generate excess of baryon number compared to antibaryon number1427

in order to create the observed baryon number today.1428
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Fig. 11. The ratio between Higgs density nH and baryon asymmetry density nB − nB̄

as a function of temperature T assuming chemical Higgs equilibrium ΥH = 1 and present
day entropy per baryon. Both densities are equal (horizontal line) at the temperature T =
5.7GeV. Adapted from Ref. [5]

The precise epoch responsible for the observed matter genesis η in the primordial1429

Universe has not been established yet. Several mechanisms have been proposed to1430

explain baryogenesis with investigations typically focusing on the temperature range1431

between GUT phase transition TG ≃ 1016 GeV and the electroweak phase transition1432

near TW ≃ 130GeV [72,73,74,75,76,77,78,79,80].1433

In following we present arguments that the Sakharov conditions [81] for matter1434

asymmetry to form also could appear during the QGP era: several heavy particles such1435

as bottom quarks and including the Higgs as described above can fulfill nonequilibrium1436

requirement. We will study below in more detail the bottom case and argue for the1437

Higgs case. Other cases are possible.1438

In 1967, Andrei Sakharov formulated the three conditions necessary to permit1439

baryogenesis in the primordial Universe [81] and in 1991 he refined the three condi-1440

tions as follows [82]:1441

– Absence of baryonic charge conservation1442

– Violation of CP-invariance1443

– Non-stationary conditions in absence of local thermodynamic equilibrium1444

In regard to first Sakharov condition: By assumption there is no initial asymmetry1445

in baryon number in the Universe. Toady it is argued that an initial asymmetry1446

could not survive the inflationary expansion. Furthermore ad-hoc Big-Bang baryon-1447

antibaryon inherent asymmetry seems less attractive. In short we believe that the1448

asymmetry between baryons and antibaryons we observe requires dynamic process1449

and the presence of baryon number non-conserving reactions.1450

The other option, an interaction which favors agglomerations of same ‘sign’ bary-1451

onic matter creating large domains in the Universe with small baryon-antibaryon1452

asymmetry has never taken hold: We recall that the laws of physics favor opposite1453

outcome, the elementary antimatter is eclectically attracted to matter. Neutral com-1454

posite baryonic particles present in era in which antimatter is present (e.g. neutrons,1455
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Λ(uds), charmed baryons etc., emerging just after QGP hadronization) deserve a1456

second look on this account.1457

The second Sakharov condition requiring CP violation assures us that we can1458

recognize in universal manner the difference between matter and antimatter. Clearly,1459

we could not enhance one form with reference to the other without being able to tell1460

matter from antimatter. CP violation is allowing us to share with another distant1461

civilization that we are made of matter. A nice textbook discussion showing how to1462

do this using Kaon system CP violation is offered by Perkins [83].1463

The third Sakharov condition is a requirement for breaking of detailed balance1464

condition: It is evident that in thermal equilibrium, the net effect of baryogenesis pro-1465

cesses is cancelled out by the detailed balance between forward and back-reactions.1466

Space-time domains involving phase transitions harbor nonequilibrium thermal dis-1467

tributions leading to breaking of detailed balance. So far efforts to create consistent1468

description of baryogenesis based on well studied electro-weak phase transition near1469

T = 130GeV has not been able to generate the observed baryon asymmetry.1470

We distinguish kinetic (momentum distribution) and chemical (particle abun-1471

dance) equilibrium. This is so since kinetic equilibrium is usually established much1472

more quickly, while abundance yields are more difficult to establish, especially so for1473

particles with masses in excess, or at least similar to ambient temperatures [84,21].1474

This distinction has two relevant consequences: a) Detailed balance can arise also1475

outside of strict chemical equilibrium condition which is seen in other physical envi-1476

ronments, including the nucleo-synthesis processes in the Universe (BBN) and stars.1477

b) There is a long lasting small violation of detailed balance related to the arrow1478

of time introduced by the Universe expansion. c) Most promising is for absence of1479

stationary distribution is lack of kinetic equilibrium.1480

Specifically for all heavy primordial particles including the top t and bottom b1481

quarks, W and Z gauge bosons, and, the Higgs particle H we observe that when1482

the Universe expands and temperature cools down well below the particle mass, the1483

production process and decay processes create a stationary equilibrium with detailed1484

balance outside of equilibrium. However, Universe expansion disturbs this creating1485

non-stationary effects. Moreover, as we will argue just below, Higgs is an excellent1486

candidate for non-stationary effects due to its small coupling to low mass particle1487

plasma. Thus we interpret the third condition of Sakharov in our specific context as1488

follows:1489

– Non-stationary conditions in absence of local thermodynamic equilibrium =⇒ Ab-1490

sence of detailed balance associated with nonequilibrium yields and non-stationary1491

particle momentum abundance evolution.1492

We believe that the presence of chemical (abundance) nonequilibrium is a required1493

condition for baryogenesis environment which extends the phenomenon to a much1494

wider temperture domain beyond the electro-weak phase transition condition down1495

to a temperature of a few GeV. This is one of our ongoing research challenges. We1496

will use the case of bottom quarks to demonstrate the mechanism we are exploring.1497

Production and decay of Higgs in QGP1498

The Higgs particle is unique among heavy PP-SM particles also due to its stability:1499

The total width is ΓH ≃ 2.5 10−5MH . This combines with the unexpected low value1500

of T = 5.7GeV of interest where the Higgs yield equals to the baryon asymmetry in1501

the Universe. This motivates us to examine here in qualitative manner the dynamical1502

abundance of the Higgs particle in the QGP epoch, seeking eventual non-stationary1503

condition needed for baryogenesis1504
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The Higgs predominantly decays via the W,Z decay channels as follows:1505

H −→WW ∗ .ZZ∗ −→ anything . (2.4)

HereW ∗, Z∗ represent the production of virtual off-mass-shell gauge bosons decaying1506

rapidly into relevant particle pairs. Therefore once Higgs decays via this channel at1507

least four particles are ultimately formed and there is no path back for T ≪ mH .1508

This is so since the spectral energy of produced particles, 31GeV is highly epithermal1509

compared to the ambient plasma at the low temperature of interest near to T ≃ 6GeV.1510

Therefore a back-reaction production of Higgs cannot be in balance for chemical1511

equilibrium yield.1512

In the QGP epoch, the dominant production of the Higgs boson is the bottom1513

quark pair fusion reaction:1514

b+ b −→ H , (2.5)

which is the inverse to the important but by far not dominant decay process of1515

H → b + b. This means that in first approximation the detailed balance Higgs yield1516

is reached well below the chemical equilibrium.1517

However, there could be considerable deviation from kinetic momentum equilib-1518

rium as well. This is so since bottom fusion will in general produce a Higgs particle1519

out of kinetic momentum equilibrium. A heavy particle immersed into a plasma of1520

lighter particles requires many, many collisions to equilibrate the momentum distribu-1521

tion. This is a well known kinetic theory result. Moreover, the Higgs particle interacts1522

weakly with all lower mass particles in QGP present at T < 10GeV.1523

Higgs particle is by far the best candidate to fulfill the Sakharov non-stationary1524

condition in the primordial Universe at a temperature range of interest to baryo-1525

genesis. A full dynamic study leading to proper understanding of the off-chemical1526

and off-kinetic equilibrium non-stationary abundance of Higgs is one of near future1527

projects we consider and is beyond the scope of this report.1528

2.2 Heavy quark production and decay1529

Heavy quarks in primordial QGP1530

The primordial quark-gluon plasma (QGP) refers to the state of matter that existed1531

in the primordial Universe, specifically for time t ≈ 20µs after the Big-Bang. At that1532

time the Universe was controlled by the strongly interacting particles: quarks and1533

gluons. In this chapter, we study the heavy bottom and charm flavor quarks near1534

to the QGP hadronization temperature 0.3GeV > T > 0.15GeV and examine the1535

relaxation time for the production and decay of bottom/charm quarks then show that1536

the bottom quark nonequilibrium occur near to QGP–hadronization and create the1537

arrow in time in the primordial Universe.1538

In the QGP epoch, up and down (u, d) (anti)quarks are effectively massless and1539

provide along with gluons, some leptons, and photons the thermal bath defining the1540

thermal temperature. Strange (s) (anti)quarks are also found to be in equilibrium con-1541

sidering their weak, electromagnetic, and strong interactions, indeed this equilibrium1542

continues in hadronic epoch until T ≈ 13MeV [10].1543

The massive top (t) (anti)quarks couple to the plasma via the channel [71]1544

t↔W + b , Γt = 1.4± 0.2GeV . (2.6)

As is well known, the width prevents formation of bound toponium states. Given the1545

large value of Γt there is no freeze-out of top quarks until W itself freezes out. To1546
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address the top quarks in QGP, a dynamic theory forW abundance is needed, a topic1547

we will embark on in the future.1548

The semi-heavy bottom (b) and charm (c) quarks can be produced by strong inter-1549

actions via quark-gluon pair fusion processes, these quarks decay via weak interaction1550

decays, their abundance depends on the competition between the strong interaction1551

fusion processes at low temperature inhibited by the mass threshold, and weak decay1552

reaction rates.1553

In the following we consider the temperature near QGP hadronization 0.3GeV >1554

T > 0.15GeV, and study the bottom and charm abundance by examining the relevant1555

reaction rates of their production and decay. In thermal equilibrium the number1556

density of light quarks can be evaluated in the massless limit, and we have1557

nq =
gq
2π2

T 3F (Υq) , F =

∫ ∞
0

x2dx

1 + Υ−1q ex
, (2.7)

where Υq is the quark fugacity. We have F (Υq = 1) = 3 ζ(3)/2 with the Riemann1558

zeta function ζ(3) ≈ 1.202. The thermal equilibrium number density of heavy quarks1559

with mass m ≫ T can be well described by the Boltzmann expansion of the Fermi1560

distribution function, giving1561

nq=
gqT

3

2π2

∞∑
n=1

(−1)n+1Υn
q

n4

(nmq

T

)2
K2

(nmq

T

)
, (2.8)

where K2 is the modified Bessel functions of integer order ‘2’. In the case of interest,1562

when m≫ T , it suffices to consider the Boltzmann approximation and keep the first1563

term n = 1 in the expansion. The first term n = 1 also suffices for both charmed1564

c-quarks and bottom b-quarks, giving1565

nb,c = Υb,c n
th
b,c, nthb,c =

gb,c
2π2

T 3
(mb,c

T

)2
K2(mb,c/T ). (2.9)

However, for strange s quarks, several terms are needed.1566

In Fig. 12 we show the equilibrium (Υ = 1) bottom and charm number density per1567

entropy density ratio as a function of temperature T . The b-quark mass parameters1568

shown are mb = 4.2GeV (blue) dotted line, mb = 4.7GeV (black) solid line, and1569

mb = 5.2GeV (red) dashed line. For c-quark mc = 0.93GeV (blue) dotted line,1570

mc = 1.04GeV (black) solid line, and mc = 1.15GeV (red) dashed line. The entropy1571

density is given by Eq. (1.23) and only light particles contribute significantly. Thus1572

the result we consider is independent of actual abundance of c, b and other heavy1573

particles.1574

The mb ≃ 5.2GeV is a typical potential model mass used in modeling bound1575

states of bottom, and mb = 4.2, 4.7GeV is the current quark mass at low and high1576

energy scales. In Fig. 12 we see that the charm abundance in the domain of interest1577

0.3GeV > T > 0.15GeV is about 104 ∼ 109 times greater than the abundance of1578

bottom quarks. This implies that the small b,b̄ quark abundance is embedded in a1579

large background comprising all lighter u, d, s, c quarks and anti-quarks, as well as1580

gluons g.1581

In the following we will calculate the production and decay rate for bottom and1582

charm quarks and compare to the Universe expansion rate. We will show that in1583

the epoch of interest to us the characteristic Universe expansion time 1/H is much1584

longer than the lifespan and production time of the bottom/charm quark. In this1585

case, the dilution of bottom/charm quark due to the Universe expansion is slow1586

compare to the the strong interaction production, and the weak interaction decay of1587

the bottom/charm. Any abundance nonequilibrium will therefore be nearly stationary.1588
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Fig. 12. The equilibrium charm and bottom quark number density normalized by entropy
density, as a function of temperature in the primordial Universe, see text for discussion of
different mass values. Adapted from Ref. [5]

It is important for following analysis to know that the expansion of the Universe1589

is the slowest process, allowing many microscopic reactions at a ‘fixed’ temperature1590

range T to proceed. To show this we evaluate the Hubble relation to obtain 1/H [s]1591

H2 =
8πGN

3

(
ργ + ρlepton + ρquark + ρg,W±,Z0

)
, (2.10)

The effectively massless particles and radiation dominate particle energy density ρi1592

defining the speed of expansion of the Universe within temperature range 130GeV >1593

T > 0.15GeV; we have the following particles: photons, 8 color charge gluons, W±,1594

Z0, three generations of 3 color charge quarks and leptons in the primordial QGP.1595

The characteristic Universe expansion time constant 1/H is seen in Fig. 13 below. In1596

the epoch of interest to us 0.3GeV > T > 0.15GeV, the Hubble time 1/H ≈ 10−51597

sec which is much longer than the microscopic lifespan and production time of the1598

bottom and charm quarks we study1599

Quark production rate via strong interaction1600

In primordial QGP, the bottom and charm quarks can be produced from strong inter-1601

actions via quark-gluon pair fusion processes. For production, we have the following1602

processes1603

q + q̄ −→ b+ b̄, q + q̄ −→ c+ c̄, (2.11)

g + g −→ b+ b̄, g + g −→ c+ c̄ . (2.12)
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For the quark-gluon pair fusion processes the evaluation of the lowest-order Feyn-1604

man diagrams yields the cross sections [30]:1605

σqq̄→bb̄,cc̄ =
8πα2

s

27s

(
1 +

2m2
b,c

s

)
w(s), w(s) =

√
1− 4m2

b,c/s, (2.13)

σgg→bb̄,cc̄ =
πα2

s

3s

[(
1+

4m2
b,c

s
+
m4

b,c

s2

)
ln

(
1 + w(s)

1− w(s)

)
−

(
7

4
+
31m2

b,c

4s

)
w(s)

]
, (2.14)

where mb,c represents the mass of bottom or charm quark, s is the Mandelstam vari-1606

able, and αs is the QCD coupling constant. Considering the perturbation expansion1607

of the coupling constant αs for the two-loop approximation [30], we have:1608

αs(µ
2) =

4π

β0 ln(µ2/Λ2)

[
1− β1

β0

ln(ln (µ2/Λ2))

ln(µ2/Λ2)

]
, (2.15)

where µ is the renormalization energy scale and Λ2 is a parameter that determines1609

the strength of the interaction at a given energy scale in QCD. The energy scale we1610

consider is based on required gluon/quark collisions above bb̄ energy threshold, so we1611

have µ = 2mb + T . For the energy scale µ > 2mb we have Λ = 180 ∼ 230MeV (Λ ≈1612

205MeV in our calculation), and the parameters β0 = 11−2nf/3, β1 = 102−38nf/31613

with the number of active fermions nf = 4.1614

In general the thermal reaction rate per unit time and volume R can be written1615

in terms of the scattering cross section as follows [30]:1616

R ≡
∑
i

∫ ∞
sth

ds
dRi

ds
=
∑
i

∫ ∞
sth

ds σi(s)Pi(s), (2.16)

where σi(s) is the cross section of the reaction channel i, and Pi(s) is the number of1617

collisions per unit time and volume. Considering the quantum nature of the colliding1618

particles (i.e., Fermi and Bose distribution) with the massless limit and chemical1619

equilibrium condition (Υ = 1), we obtain [30]1620

Pi(s) =
g1g2
32π4

T

1 + I12

λ2√
s

∞∑
l,n=1

(±)l+nK1(
√
lns/T )√
ln

, (2.17)

λ2 ≡
[
s− (m1 +m2)

2
] [
s− (m1 −m2)

2
]
, (2.18)

where + is for boson and − is for fermions, and the factor 1/(1 + I12) is introduced1621

to avoid double counting of indistinguishable pairs of particles. I12 = 1 for identical1622

pair of particles, otherwise I12 = 0. Hence the total thermal reaction rate per volume1623

for bottom quark production can be written as1624

RSource
b,c =

∫ ∞
sth

ds

[
σqq̄→bb̄,cc̄ Pq + σgg→bb̄,cc̄ Pg

]
(2.19)

We introduce the bottom/charm quark relaxation time for the quark-gluon pair fusion1625

as follows:1626

τSourceb,c ≡ dnb,c/dΥb,c
RSource

b,c

, (2.20)
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Fig. 13. Comparison of Hubble time 1/H, quark lifespan τq, and characteristic time for
production via quark, gluon pair fusion. The upper frame for charm c-quark in the entire
QGP epoch T rang; the lower frame for bottom b-quark amplifying the dynamic detail
balance T ≃ 200MeV. Both figures end at the hadronization temperature of TH ≈ 150MeV.
See text for additional information. Published in Ref. [1] under the CC BY 4.0 license.
Adapted from Ref. [5]

https://creativecommons.org/licenses/by/4.0/
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where dnb,c/dΥb,c = nthb,c in the Boltzmann approximation. The relaxation time is on1627

the order of magnitude of time needed to reach chemical equilibrium.1628

In Fig. 13 we show the characteristic time for b and c quark strong interaction1629

production. The c quark (upper frame) is shown in the entire QGP temperature1630

range. We note the vast 15 orders of magnitude difference between the Hubble time1631

and the rate of production. This means that there will be very many microscopic cycles1632

of charm production decay erasing any non-stationary effect. For b (lower frame) we1633

restrict the view to temperature range in the domain of interest, 0.3GeV > T >1634

0.15GeV. Three different masses mb = 4.2GeV (blue short dashes), 4.7GeV, (solid1635

black), 5.2GeV (red long dashes) for bottom quarks are shown.1636

Quark decay rate via weak interaction1637

The bottom/charm quark decay via the weak interaction1638

b −→ c+ l + νl, b −→ c+ q + q̄, (2.21)

c −→ s+ l + νl, c −→ s+ q + q̄ . (2.22)

The vacuum decay rate for 1 → 2 + 3 + 4 in vacuum can be evaluated via the weak1639

interaction:1640

1

τ1
=
64G2

F V
2
12 V

2
34

(4π)3g1
m5

1 ×
[
1

2

(
1− m2

2

m2
1

− m2
3

m2
1

+
m2

4

m2
1

)
J1 −

2

3
J2
]
, (2.23)

where the Fermi constant is GF = 1.166 × 10−5 GeV−2, Vij is the element of the1641

Cabibbo-Kobayashi-Maskawa (CKM) matrix [85] for quark channel and Vlνl
= 1 for1642

lepton channel. The functions J1 and J2 are given by1643

J1=
∫ (1−m2

2/m
2
1)/2

0

dx

(
1−2x−m

2
2

m2
1

)2 [
1

(1− 2x)2
− 1

]
(2.24)

J2=
∫ (1−m2

2/m
2
1)/2

0

dx

(
1−2x−m

2
2

m2
1

)3 [
1

(1− 2x)3
− 1

]
(2.25)

The modification due to the heat bath(plasma) is small because the bottom and1644

charm mass mb,c ≫ T [86]. In the temperature range we are interested in, the decay1645

rate in the vacuum is a good approximation for our calculation.1646

We show the lifespan for bottom and charm quarks in Fig. 13. For charm (upper1647

frame) the decay is always much slower compared to production. This assures that the1648

strong interaction processes can maintain equilibrium easily. Thus during the entire1649

era of QGP charm quarks can be assumed to be in equilibrium condition.1650

After hadronization, charm quarks form heavy mesons that decay into several1651

hadronic particles. The daughter particles from charm meson decay can interact and1652

re-equilibrate within the hadron plasma. There are very many branching reactions1653

and some involve production of only light particles. In this case the energy required1654

to drive inverse reaction to produce heavy charm mesons is difficult to overcome. We1655

believe this is causing the charm quark to vanish from the inventory shortly after1656

hadronization but a detailed study has not been carried out due to complexity of the1657

situation.1658

Looking at the lower frame in Fig. 13 we see that in the case of bottom quarks1659

the decay crosses the production rate, and this happens within QGP near to T =1660

200MeV. The intersection implies that the bottom quark freeze-out from the pri-1661

mordial plasma before hadronization as the production process slows down at low1662

temperatures and the subsequent weak interaction decay leads to a dilution of the1663
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bottom quark content within the QGP plasma. All of this occurs with rates signifi-1664

cantly faster than Hubble expansion and thus as the Universe expands, the system1665

departs from chemical equilibrium in near stationary manner, because of the com-1666

petition between decay and production reactions in QGP. We will show how the1667

dynamic equation cause the distribution to deviate from equilibrium with Υ ̸= 1 in1668

the temperature range below the crossing point but before the hadronization.1669

2.3 Is baryogenesis possible in QGP phase?1670

Bottom quark abundance nonequilibrium1671

The competition between weak interaction decay and strong interaction production1672

rates can lead to a nonequilibrium dynamic heavy quark abundance. We explore as1673

example the case of bottom quarks in QGP. Similar considerations apply to all heavier1674

PP-SM particles including in particular Higgs, W,Z gauge bosons, top t quark. How-1675

ever, the case of b-quarks attracted our attention early on in context of baryogenesis1676

since there is strong known CP violation also present.1677

The dynamic equation for bottom quark abundance in QGP can be written as1678

1

V

dNb

dt
=
(
1− Υ 2

b

)
RSource

b − ΥbRDecay
b , (2.26)

where RSource
b and RDecay

b are the thermal reaction rates per volume of production and1679

decay of bottom quark, respectively. The bottom source rates are the gluon and quark1680

fusion rates Eq. (2.19). The decay rate depends on whether the bottom quarks are1681

freely present in the plasma or are bounded within mesons. We consider two extreme1682

scenarios for the bottom quark population: 1.) all bottom flavor is free, and 2.) all1683

bottom flavor is bounded into mesons in QGP. In Fig. 14 we show the characteristic1684

interaction times relevant to the abundance of bottom quarks, as well as the Hubble1685

time 1/H for the temperature range of interest, 0.3GeV > T > 0.15GeV.1686

Considering all bottom flavor is free in QGP, the bottom decay rate per volume1687

is the bottom lifespan weighted with density of particles Eq. (2.8), see Ref. [86]. We1688

have1689

RDecay
b =

dnb/dΥb
τb

, τb ≈ 0.57× 10−11sec. (2.27)

On the other hand, b, b̄ quark abundance is embedded in a large background com-1690

prising all lighter quarks and anti-quarks (see Fig. 12). After formation the heavy b, b̄1691

quark can bind with any of the available lighter quarks, with the most likely outcome1692

being a chain of reactions1693

b+ q −→ B+ g , (2.28)

B + s −→ Bs + q , (2.29)

Bs + c −→ Bc + s , (2.30)

with each step providing a gain in binding energy and reduced speed due to the1694

diminishing abundance of heavier quarks s, c. To capture the lower limit of the rate1695

of Bc production we show in Fig. 14 the expected formation rate by considering the1696

direct process b+ c→ Bc + g, considering the range of cross section σ = 0.1 ∼ 10mb1697

[87]. The rapid formation rate of Bc(bc̄) states in primordial plasma is shown by1698

purple dashed lines at bottom in Fig. 14, we have1699

τ(b+ c→ Bc + g) ≈ (10−16 ∼ 10−14)× 1

H
. (2.31)
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Fig. 14. Characteristic production, decay, times of bottom quark as a function of temper-
ature T for 0.3GeV > T > 0.15MeV. Near the top of figure 1/H (brown solid line) and
τT (brown dashed line); other horizontal lines are bottom-quark (in QGP) weak interaction
lifetimes τb for the three different masses: mb = 4.2GeV (blue dotted line), mb = 4.7GeV
(black solid line), mb = 5.2GeV (red dashed line), and the vacuum lifespan τB of the
Bc meson (green solid line). The relaxation time for strong interaction bottom production
g+ g, q+ q̄ → b+ b̄ is shown with three different bottom masses and same type-color coding
as weak interaction decay rate. At bottom of figure the in plasma formation process (dashed
lines, purple) b+ c → Bc + g with cross section range σ = 0.1, 10mb. Adapted from Ref. [5]

Despite the low abundance of charm, the rate of Bc formation is relatively fast,1700

and that of lighter flavored B-mesons is substantially higher. Note that as long as1701

we have bottom quarks made in gluon/quark fusion bound practically immediately1702

with any quarks u, d, s into B-mesons, we can use the production rate of b, b̄ pairs as1703

the rate of B-meson formation in the primordial-QGP, which all decay with lifespan1704

of pico-seconds. We believe that this process is fast enough to allow consideration of1705

bottom decay from the Bc(bc̄), Bc(b̄c) states [14].1706

Based on the hypothesis that all bottom flavor is bound rapidly into B±c mesons,1707

we have1708

g + g, q + q ←→b+ b̄ [b(b̄) + c̄(c)] −→ B±c −→ anything. (2.32)

In this case, the decay rate per volume can be written as1709

RDecay
b =

dnb/dΥb
τBc

, τBc
≈ 0.51× 10−12sec. (2.33)

Stationary and non-stationary deviation from equilibrium1710

To investigate the nonequilibrium phenomena of bottom quarks, we aim to replace1711

the variation of particle abundance seen on LHS in Eq. (2.26) by the time variation1712
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of abundance fugacity Υ . This substitution allows us to derive the dynamic equation1713

for the fugacity parameter and enables us to study the fugacity as a function of time.1714

Considering the expansion of the Universe we have1715

1

V

dNb

dt
=
dnb
dΥb

dΥb
dt

+
dnb
dT

dT

dt
+ 3Hnb, (2.34)

where we use d ln(V )/dt = 3H for the Universe expansion. Substituting Eq. (2.34)1716

into Eq. (2.26) and dividing both sides of equation by dnb/dΥb = nthb , the fugacity1717

equation becomes1718

dΥb
dt

+3HΥb + Υb
dnthb /dT

nthb

dT

dt
=
(
1− Υ 2

b

) 1

τSourceb

− Υb
1

τDecay
b

, (2.35)

where relaxation time for bottom production is obtained using Eq. (2.20). It is con-1719

venient to introduce the relaxation time 1/τT as follows,1720

1

τT
≡ −dn

th
b /dT

nthb

dT

dt
, (2.36)

where we put ’−’ sign in the definition to have τT > 0. The relaxation time τT1721

represents how the bottom density changes due to the Universe temperature cooling.1722

In this case, the fugacity equation can be written as1723

dΥb
dt

=(1− Υ 2
b )

1

τSourceb

−Υb

(
1

τDecay
b

+ 3H− 1

τT

)
. (2.37)

In following sections we will solve the fugacity differential equation in two different1724

scenarios: stationary and non-stationary Universe.1725

In Fig. 13 (bottom) we show that the relaxation time for both production and de-1726

cay are faster than the Hubble time 1/H for the duration of QGP, which implies that1727

H, 1/τT ≪ 1/τSourceb , 1/τDecay
b . In this scenario, we can solve the fugacity equation by1728

considering the stationary Universe first, i.e., the Universe is not expanding and we1729

have1730

H = 0, 1/τT = 0. (2.38)

In the stationary Universe at each given temperature we consider the dynamic equi-1731

librium condition (detailed balance) between production and decay reactions that1732

keep1733

dΥb
dt

= 0. (2.39)

Neglecting the time dependence of the fugacity dΥb/dt and substituting the condi-1734

tion Eq. (2.38) into the fugacity equation Eq. (2.37), then we can solve the quadratic1735

equation to obtain the stationary fugacity as follows:1736

Υst =

√
1 +

(
τsource
2τdecay

)2

−
(
τsource
2τdecay

)
. (2.40)

In Fig. 15 the fugacity of bottom quark Υst as a function of temperature, Eq. (2.40)1737

is shown around the temperature T = 0.3GeV > T > 0.15GeV for different masses1738
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Fig. 15. Dynamical fugacity of bottom quark as a function of temperature in primordial
Universe. Solid line shows bottom quark bound into Bc, dashed lines the case of free bottom
quark: mb = 4.2GeV (blue), mb = 4.7GeV (black), and mb = 5.2GeV (red). Published in
Ref. [1] under the CC BY 4.0 license. Adapted from Ref. [5]

of bottom quarks. In all cases we see prolonged nonequilibrium, this happens since1739

the decay and reformation rates of bottom quarks are comparable to each other as we1740

have noted in Fig. 14 where both lines cross. One of the key results shown in Fig. 151741

is that the smaller mass of bottom quark slows the strong interaction formation rate1742

to the value of weak interaction decays just near the phase transformation of QGP1743

to HG phase. Finally, the stationary fugacity corresponds to the reversible reactions1744

in the stationary Universe. In this case, there is no arrow in time for bottom quark1745

because of the detailed balance.1746

We now consider non-stationary correction in expanding Universe allowing for1747

the Universe expanding and thus temperature being a function of time. This leads1748

to non-stationary correction related to time dependent fugacity in the expanding1749

Universe.1750

In general, the fugacity of bottom quark can be written as1751

Υb = Υst + Υ non
st = Υst (1 + x) , x ≡ Υ non

st /Υst, (2.41)

where the variable x corresponds to the correction due to non-stationary Universe.1752

Substituting the general solution Eq. (2.41) into differential equation Eq. (2.37), we1753

obtain1754

dx

dt
= −x2 Υst

τsource
− x

[
1

τeff
+ 3H − 1

τT

]
−
[
d lnΥst
dt

+ 3H − 1

τT

]
, (2.42)

where the effective relaxation time 1/τeff is defined as1755

1

τeff
≡
[

2Υst
τsource

+
1

τdecay
+
d lnΥst
dt

]
. (2.43)

https://creativecommons.org/licenses/by/4.0/
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Fig. 16. The effective relaxation time τeff as a function of temperature in the primordial
Universe for bottom mass mb = 4.7GeV. For comparison, we also plot the vacuum lifespan
of Bc meson τdecay

Bc
(red dashed-line), the relaxation time for bottom production τ b

source

(blue dashed-line), Hubble expansion time 1/H(brown solid line) and relaxation time for
temperature cooling τT (brown dashed-line). Adapted from Ref. [5]

In Fig. 16 we see that when temperature is near to T = 0.2GeV, we have 1/τeff ≈1756

107H, and 1/τeff ≈ 105/τT . In this case, the last two terms in Eq. (2.42) compare to1757

1/τeff can be neglected, and the differential equation becomes1758

dx

dt
= − x2 Υst

τsource
− x

τeff
−
[
d lnΥst
dt

+ 3H − 1

τT

]
, (2.44)

To solve the variable x we consider the case dx/dt, x2 ≪ 1 first, we neglect the1759

terms dx/dt and x2 in Eq. (2.44) then solve the linear fugacity equation. We will1760

establish that these approximations are justified by checking the magnitude of the1761

solution. Neglecting terms dx/dt and x2 in Eq. (2.44) we obtain1762

x ≈ τeff
[
d lnΥst
dt

+ 3H − 1

τT

]
. (2.45)

It is convenient to change the variable from time to temperature. For an isentropically-1763

expanding universe, we have1764

dt

dT
= −τ

∗
H

T
, τ∗H =

1

H

(
1 +

T

3gs∗

dgs∗
dT

)
. (2.46)

In this case, we have1765

x = τeff

[
1

Υst

dΥst
dT

T

τ∗H
+ 3H − 1

τT

]
. (2.47)
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Fig. 17. The non-stationary fugacity Υ non
st as a function of temperature in the Universe for

different bottom mass mb = 4.2GeV (blue), mb = 4.7GeV (black), and mb = 5.2GeV (red)
for the case bottom quarks bound into Bc mesons. Adapted from Ref. [5]

Finally, we can obtain the non-stationary fugacity by multiplying the fugacity ratio1766

x with Υst, giving1767

Υ non
st ≈

(
τeff
τ∗H

)[
dΥst
dT

T − Υst
(
3Hτ∗H −

τ∗H
τT

)]
. (2.48)

In Fig. 17 we plot the non stationary Υ non
st as a function of temperature. The non1768

stationary fugacity Υ non
st follows the behavior of dΥst/dT , which corresponds to the1769

irreversible process in expanding Universe. In this case, the irreversible nonequilibrium1770

process creates the arrow in time for bottom quark in the Universe. The large value1771

of Hubble time compares to the effective relaxation time suppressing the value of1772

non-stationary fugacity to O ∼ 10−7, which shows that the neglecting dx/dt, x2 ≪ 11773

is a good approximation for solving the non-stationary fugacity in the primordial1774

Universe.1775

Is there enough bottom flavor to matter?1776

Considering that FLRW-Universe evolves conserving entropy, and that baryon and1777

lepton number following on the era of matter genesis is conserved, the current day1778

baryon B to entropy S, B/S-ratio must be achieved during matter genesis. The1779

estimates of present day baryon-to-photon density ratio η allows the determination1780

of the present value of baryon per entropy ratio [33,30,29,27]:1781 (
B

S

)
t0

= η

(
nγ

σγ + σν

)
t0

= (8.69± 0.05)×10−11, (2.49)

where the subscript t0 denotes the present day value, where η = (6.12 ± 0.04) ×1782

10−10 [71] is used in calculation. Here we consider that the Universe today is domi-1783

nated by photons and free-streaming low mass neutrinos [26], and σγ and σν are the1784

entropy density for photons and neutrinos, respectively.1785
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In chemical equilibrium the ratio of bottom quark (pair) density nthb to entropy1786

density σ = S/V just above quark-gluon hadronization temperature TH = 150 ∼1787

160MeV is nthb /σ = 10−10 ∼ 10−13 (see Fig. 12. By studying the bottom density per1788

entropy near to the hadronization temperature and comparing it to the baryon-per-1789

entropy ratio B/S we found that there is sufficient abundance of bottom quarks for1790

the proposed matter genesis mechanism to be relevant.1791

Example of bottom-catalyzed matter genesis1792

Given that the nonequilibrium non-stationary component of bottom flavor arises at1793

relatively low QGP temperature, this Sakharov condition is available around QGP1794

hadronization. Let us now look back and see how different requirements are fulfilled1795

– We have demonstrated non-stationary conditions with absence of detailed bal-1796

ance: The competition between weak interaction decay and the strong interaction1797

gluon fusion process is responsible for driving the bottom quark departure from1798

the equilibrium in the primordial Universe near to QGP hadronization condition1799

around the temperature T = 0.3 ∼ 0.15GeV as shown in Fig. 15. Albeit small1800

there is clear non-stationary component required for baryogenesis, see Fig. 17.1801

– Violation of CP asymmetry were observed in the amplitudes of hadron decay in-1802

cluding neutral B-mesons, see for example [88,89]. The weak interaction CP vio-1803

lation arises from the components of Cabibbo-Kobayashi-Maskawa (CKM) matrix1804

associated with quark-level transition amplitude and CP -violating phase. There1805

is clear coincidence of non stationary component of bottom yield with the bottom1806

quark CP violating decays of preformed Bx meson states, x = u, d, s, c [90,91,1807

92,93,94,95]. The exploration of the here interesting CP symmetry breaking in1808

Bc(bc̄) decay is in progress [96,97,71].1809

– We do not know if there is baryon number violating process in which one of1810

the heavy particles, including bottom quark, is participating. However, if such1811

a process were to exist it is likely, considering mass thresholds, that it would1812

be most active in the decays of heaviest standard model particles. It is thus of1813

considerable interest to study in lepton colliders baryon number non conserving1814

processes at resonance condition. Such a research program will additionally be1815

motivated by our demonstration of an extended period of baryogenesis in the1816

primordial Universe.1817

Circular Urca amplification1818

The off equilibrium phenomenon of bottom quark around the temperature range T =1819

0.3 ∼ 0.15GeV can provide the non-chemical equilibrium non-stationary condition1820

for baryogenesis to occur in the primordial-QGP hadronization era. The processes of1821

interest as we saw are small. However there is additional amplifying factor.1822

Let us consider the scenario where all bottom quarks are confined within B±c1823

meson. In this case, the decay of charged mesons in the primordial-QGP can be1824

a source of CP violation. However, it remains uncertain whether the decay of B±c1825

mesons contributes to baryon violation. Our postulation is as follows: the baryon1826

asymmetry is produced by the bottom quark disappearance via the irreversible decay1827

of B±c meson during the off-equilibrium process. Once a baryon symmetry exists in1828

universe, it will also produce the asymmetry between leptons and anti-leptons which1829

is similar to the baryon asymmetry by the L = B.1830

The heavy B±c meson decay into multi-particles in plasma is associated with the1831

irreversible process. This is because after decay the daughter particles can interact1832

with plasma and distribute their energy to other particles and reach equilibrium with1833

the plasma quickly. In this case the energy required for the inverse reaction to produce1834
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B±c meson is difficult to overcome and therefore we have an irreversible process for1835

multi-particle decay in plasma.1836

The rapid B±c decay and bottom reformation speed at picosecond scale assures1837

that there are millions of individual microscopic processes involving bottom quark1838

production and decay before and during the hadronization epoch of QGP. In this1839

case, we have an Urca process for the bottom quark, i.e. a cycling reaction that1840

produces the bottom quark which subsequently disappears via the B±c meson decay.1841

The Urca process is a fundamental physical process and has been studying the1842

realms of in astrophysics and nuclear physics. In our case, for bottom quark as a1843

example: at low temperature, the number of bottom quark cycling can be estimated1844

as1845

Ccycle|T=0.2GeV =
τH
τBc

≈ 2× 107, (2.50)

where the lifespan of B±c is τBc
≈ 0.51 × 10−12 sec and at temperature T = 0.2GeV1846

the Hubble time is τH = 1/H = 1.272 × 10−5 sec. The Urca process plays a sig-1847

nificant role by potentially amplifying any small and currently unobserved violation1848

of baryon number associated with the bottom quark. The small baryon asymmetry1849

is enhanced by the Urca-like process with cycling τ∗H/τ∗ in the primordial Universe.1850

This amplification would be crucial for achieving the required strength for today’s1851

observation.1852

2.4 Strange hadron abundance in cosmic plasma1853

Hadron populations in equilibrium1854

As the Universe expanded and cooled down to the QGP Hagedorn temperature TH ≈1855

150MeV, the primordial QGP underwent a phase transformation called hadroniza-1856

tion. Quarks and gluons fragmented, combined and formed matter and antimat-1857

ter we are familiar with. After hadronization, one may think that all relatively1858

short lived massive hadrons decay rapidly and disappear from the Universe. How-1859

ever, the most abundant hadrons, pions π(qq̄), can be produced via their inverse1860

decay process γγ → π0. Therefore they retain their chemical equilibrium down to1861

T = 3 ∼ 5MeV [86].1862

We begin by determining the Universe particle population composition assum-1863

ing both kinetic and particle abundance equilibrium (chemical equilibrium) of non-1864

interacting bosons and fermions. By considering the charge neutrality and a prescribed1865

conserved baryon-per-entropy-ratio (nB − nB)/σ we can determine the baryon chem-1866

ical potential µB [29,27,23]. We extend this approach allowing for the presence of1867

strange hadrons, and imposing conservation of strangeness in the primordial Universe1868

– the strange quark content in hadrons must equal the anti-strange quark content in1869

statistical average ⟨s− s̄⟩ = 0.1870

Given µB(T ), µs(T ) the baryon and strangeness chemical potentials as a function1871

of temperature, we can obtain the particle number densities for different strange1872

and non-strange species and study their population in the primordial Universe. Our1873

approach prioritizes strangeness pair production into bound hadron states by strong1874

or electromagnetic interactions over the also possible weak interaction strangeness1875

changing processes capable to amplify the effect of baryon asymmetry. This is another1876

topic beyond scope of this work and deserving further attention.1877

To characterize the baryon and strangeness content of a hadron we employ the1878

chemical fugacity for strangeness λs and for light quarks λq1879

λs = exp(µs/T ) λq = exp(µB/3T ) . (2.51)
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Here µs and µB are the chemical potential of strangeness and baryon, respectively.1880

To obtain quark fugacity λq, we divide the baryo-chemical potential of baryons by1881

quark content in the baryon, i.e. three.1882

When the baryon chemical potential does not vanish the chemical potential of1883

strangeness in the primordial Universe is obtained imposing the conservation of1884

strangeness constraint ⟨s− s̄⟩ = 0, see Section 11.5 in Ref. [30]1885

λs = λq

√
FK + λ−3q FY

FK + λ3q FY
. (2.52)

where we employ the phase-space function Fi for sets of nucleon N , kaons K, and1886

hyperon Y particles1887

FN =
∑
Ni

gNiW (mNi/T ) , Ni = n, p,∆(1232), (2.53)

FK =
∑
Ki

gKiW (mKi/T ) , Ki = K0,K0,K±,K∗(892), (2.54)

FY =
∑
Yi

gYi
W (mYi

/T ) , Yi = Λ,Σ0, Σ±, Σ(1385), (2.55)

gNi,Ki,Yi
are the degeneracy factors, W (x) = x2K2(x) with K2 is the modified Bessel1888

functions of integer order ‘2’.1889

Considering the massive particle number density in the Boltzmann approximation1890

we obtain1891

nN =
T 3

2π2
λ3qFN , nN =

T 3

2π2
λ−3q FN , (2.56)

nK =
T 3

2π2

(
λsλ

−1
q

)
FK , nK =

T 3

2π2

(
λ−1s λq

)
FK , (2.57)

nY =
T 3

2π2

(
λ2qλs

)
FY , nY =

T 3

2π2

(
λ−2q λ−1s

)
FY . (2.58)

In this case, the net baryon density in the primordial Universe with temperature1892

range 150MeV > T > 10MeV can be written as1893

(nB − nB)
σ

=
1

σ
[(np − np) + (nn − nn) + (nY − nY )]

=
T 3

2π2 σ

[(
λ3q − λ−3q

)
FN +

(
λ2qλs − λ−2q λ−1s

)
FY

]
=

T 3

2π2σ

(
λ3q − λ−3q

)
FN

[
1 +

λs
λq

(
λ3q − λ−1q λ−2s

λ3q − λ−3q

)
FY

FN

]

≈ T 3

2π2σ

(
λ3q − λ−3q

)
FN

[
1 +

λs
λq

FY

FN

]
, (2.59)

where we can neglect the term FY /FK in the expansion of Eq. (2.52) in our temper-1894

ature range.1895

Introducing the strangeness conservation ⟨s − s̄⟩ = 0 constraint and using the1896

entropy density in primordial Universe, the explicit relation for baryon to entropy1897

ratio becomes1898

nB − nB
σ

=
45

2π4gs∗
sinh

[µB

T

]
FN ×

[
1 +

FY

FN

√
1 + e−µB/T FY /FK

1 + eµB/T FY /FK

]
. (2.60)
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Fig. 18. The chemical potential of baryon number µB/T and strangeness µs/T as a function
of temperature 150MeV > T > 10MeV in the primordial Universe; for comparison we show
mN/T with mN = 938.92MeV, the average nucleon mass. Published in Ref. [10] under the
CC BY 4.0 license. Adapted from Ref. [5]

The present-day baryon-per-entropy-ratio is needed in Eq. (2.60) and we obtain the1899

value1900

nB − nB
σ

=
nB − nB

σ

∣∣∣∣
t0

= (0.865± 0.008)× 10−10 . (2.61)

For a details of evaluation method we refer to our earlier work, however we have1901

updated results to the updated baryon-to-photon ratio [71]: (nB − nB) /nγ = (0.609±1902

0.06)× 10−9, supplemented by quantum value of entropy per particle for a massless1903

boson σ/n|boson ≈ 3.60, and for a massless fermion σ/n|fermion ≈ 4.20. We solve1904

Eq. (2.52)) and Eq. (2.60) numerically to obtain baryon and strangeness chemical1905

potentials as a function of temperature shown in Fig. 18.1906

The chemical potential in Fig. 18 changes dramatically in the temperature window1907

50MeV ≤ T ≤ 30MeV, its behavior is describing the antibaryon disappearance from1908

Universe inventory. Substituting the chemical potential λq and λs into particle density1909

Eq. (2.56), Eq. (2.57), and Eq. (2.58), we can obtain the particle number densities for1910

different species as a function of temperature.1911

In Fig. 19 we plot the number density of antibaryons (red line), baryons (solid blue)1912

and net baryon nB−nB (dashed blue) as a function of temperature. We determine the1913

value of temperature T = 38.2MeV to correspond to the condition nB ≪ (nB−nB) =1914

1, the effective antibaryon disappearance temperature from the Universe inventory1915

T = 38.2MeV is in agreement with the qualitative result presented in 1990 by Kolb1916

and Turner [53]. Below this temperature, there antibaryons rapidly disappear, the1917

net baryon density is the baryon asymmetry which dilutes keeping baryon to entropy1918

ratio constant.1919

https://creativecommons.org/licenses/by/4.0/
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Fig. 19. The antibaryon nB (red solid line) number density as a function of temperature
in the range 150MeV > T > 5MeV. The blue solid line for baryons nB merges into the
antibaryon yield so that net baryon number nB − nrB (dashed blue line) continues the net
baryon yield seen as solid blue line. At temperature T = 38.2MeV we have nB/(nB −nB) =
1, antibaryons disappear from the Universe. Published in Ref. [1] under the CC BY 4.0
license. Adapted from Ref. [5]

In Fig. 20 we show examples of particle abundance ratios of interest. Pions π(qq̄)1920

are the most abundant hadrons nπ/nB ≫ 1, because of their low mass and the1921

reaction γγ → π0, which assures chemical yield equilibrium [86] in the era of interest1922

here. For 150MeV > T > 20.8MeV, we see the ratio nK(q̄s)/nB ≫ 1, which implies1923

pair abundance of strangeness is more abundant than baryons, and is dominantly1924

present in mesons, since nK/nY ≫ 1. Considering nY /nB we see that hyperons1925

Y (sqq) remain a noticeable 1% component in the baryon yield through the domain1926

of antibaryon decoupling.1927

For 20.8MeV > T , the baryon abundance becomes dominant over strange mesons1928

nK/nB < 1, which implies that the strange meson is embedded in a large background1929

of baryons, and the exchange reaction K +N → Λ+ π can re-equilibrate kaons and1930

hyperons in the temperature range; therefore strangeness symmetry s = s̄ can be1931

maintained. For 12.9MeV > T we have nY /nB > nK/nB , now the still existent tiny1932

abundance of strangeness is found predominantly in hyperons.1933

Strangeness dynamic population1934

Given the equilibrium abundances of hadrons in the epoch of interest is 150MeV ≥1935

T ≥ 10MeV we turn now to study the freeze-out temperature for different particles1936

and strangeness by comparing the relevant reaction rates with each other and with1937

the Hubble expansion rate. We will need to explore a large number of reactions, going1938

well beyond the relative simplicity of the case of QGP phase of matter. We find that1939

strangeness is kept in equilibrium in the primordial Universe down until T ≈ 13MeV.1940

This study addresses non-interacting particles, nuclear interactions can be many times1941

https://creativecommons.org/licenses/by/4.0/
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Fig. 20. Ratios of hadronic particle number densities with baryon B yields as a function of
temperature 150MeV > T > 10MeV: Pions π (brown line), kaons K(qs̄) (blue), antibaryon
B (black), hyperon Y (red) and anti-hyperons Y (dashed red). Also shown K/Y (purple).
Published in Ref. [1] under the CC BY 4.0 license. Adapted from Ref. [10]

greater compared to this temperature. Thus further exploration of this result seems1942

necessary in the future.1943

Let us first consider an unstable strange particle S decaying into two particles 11944

and 2, which themselves have no strangeness content. In a dense and high-temperature1945

plasma with particles 1 and 2 in thermal equilibrium, the inverse reaction populates1946

the system with particle S. This is written schematically as1947

S ⇐⇒ 1 + 2, Example : K0 ⇐⇒ π + π . (2.62)

As long as both decay and production reactions are possible, particle S abundance1948

remains in thermal equilibrium; as already discussed this balance between production1949

and decay rates is the ‘detailed balance’.1950

Once the primordial Universe expansion rate 1/H overwhelms the strongly tem-1951

perature dependent back-reaction and the back reaction freeze-out, then the decay1952

S → 1 + 2 occurs out of balance and particle S disappears rather rapidly from the1953

inventory.1954

Second on our list are the two-on-two strangeness producing and burn-up reac-1955

tions. These have a significantly higher strangeness production reaction threshold,1956

thus especially near to strangeness decoupling their influence is negligible. Such reac-1957

tions are more important near the QGP hadronization temperature TH ≃ 150MeV.1958

Typical strangeness exchange reaction is K+N ↔ Λ+π, (see Chapter 18 in Ref. [30]).1959

In Fig. 21 we show some reactions relevant to strangeness evolution in the consid-1960

ered Universe evolution epoch 150MeV ≥ T ≥ 10MeV and their pertinent reaction1961

strength. Specifically:1962

https://creativecommons.org/licenses/by/4.0/


62 Will be inserted by the editor

Fig. 21. The strangeness abundance changing reactions in the primordial Universe. The
red circles show strangeness carrying hadronic particles; red thick lines denote effectively
instantaneous reactions. Black thick lines show relatively strong hadronic reactions. The
reaction rates required to describe strangeness time evolution are presented in Ref. [13].
Published in Ref. [1] under the CC BY 4.0 license. Adapted from Ref. [5,10]

– We study strange quark abundance in baryons and mesons, considering both open1963

and hidden strangeness (hidden: ss̄-content). Important source reactions are l−+1964

l+ → ϕ, ρ+ π → ϕ, π + π → KS, Λ↔ π +N , and µ± + ν → K±.1965

– Muons and pions are coupled through electromagnetic reactions µ++µ− ↔ γ+γ1966

and π ↔ γ + γ to the photon background and retain their chemical equilibrium1967

until the temperature T = 4 MeV and T = 5MeV, respectively [12,86]. The large1968

ϕ↔ K +K rate assures ϕ and K are in relative chemical equilibrium.1969

In order to determine where exactly strangeness disappears from the Universe1970

inventory, we explore the magnitudes of different rates of production and decay pro-1971

cesses in mesons and hyperons.1972

Strangeness creation and annihilation rates in mesons1973

From Fig. 21 in the meson domain, the relevant interaction rates competing with1974

Hubble time are the reactions1975

π + π ↔ K , µ± + ν ↔ K± , l+ + l− ↔ ϕ , (2.63)

ρ+ π ↔ ϕ , π + π ↔ ρ . (2.64)

The thermal reaction rate per time and volume for two body-to-one particle reactions1976

1 + 2→ 3 has been presented before [84,86,28].1977

https://creativecommons.org/licenses/by/4.0/
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In full kinetic and chemical equilibrium, the reaction rate per time per volume1978

can be written as [28] :1979

R12→3 =
g3

(2π)2
m3

τ03

∫ ∞
0

p23dp3
E3

eE3/T

eE3/T ± 1
Φ(p3) , (2.65)

where τ03 is the vacuum lifetime of particle 3. The positive sign ‘+’ is for the case1980

when particle 3 is a boson, and negative sign ‘−’ for a fermion. The function Φ(p3)1981

for the nonrelativistic limit m3 ≫ p3, T can be written as1982

Φ(p3 → 0) = 2
1

(eE1/T ± 1)(eE2/T ± 1)
. (2.66)

Considering the Boltzmann limit, the thermal reaction rate per unit time and1983

volume becomes1984

R12→3 =
g3
2π2

(
T 3

τ03

)(m3

T

)2
K1(m3/T ), (2.67)

where K1 is the modified Bessel functions of integer order ‘1’.1985

In order to compare the reaction time with Hubble time 1/H, it is convenient to1986

define the relaxation time for the process 1 + 2→ 3 as follows:1987

τ12→3 ≡
neq1

R12→n
, neq1 =

g1
2π2

∫ ∞
m1

dE
E
√
E2 −m2

1

exp (E/T )± 1
, (2.68)

where neq1 is the thermal equilibrium number density of particle 1 with the ‘heavy’1988

mass m1 > T . Combining Eq. (2.67) with Eq. (2.68) we obtain1989

τ12→3

τ03
=

2π2neq1 /T
3

g3(m3/T )2K1(m3/T )
, neq1 ≃ g1

(
m1T

2π

)3/2

e−m1/T , (2.69)

where, conveniently, the relaxation time does not depend on the abundant and of-1990

ten relativistic heat bath component 2, e.g. l±, π, ν, γ. The density of heavy parti-1991

cles 1 and 3 can in general be well approximated using the leading and usually non-1992

relativistic Boltzmann term as shown above.1993

In general, the reaction rates for inelastic collision process capable of changing1994

particle number, for example ππ → K0, is suppressed by the factor exp (−mK0/T ).1995

On the other hand, there is no suppression for the elastic momentum and energy1996

exchanging particle collisions in plasma. In general for the case m ≫ T , the domi-1997

nant collision term in the relativistic Boltzmann equation is the elastic collision term,1998

keeping all heavy particles in kinetic energy equilibrium with the plasma. This al-1999

lows us to study the particle abundance in plasma presuming the energy-momentum2000

statistical distribution equilibrium shape exists. This insight was discussed in detail2001

in the preparatory phase of laboratory exploration of hot hadron and quark matter,2002

see [84].2003

In order to study the particle abundance in the Universe when m ≫ T , instead2004

of solving the exact Boltzmann equation, we can separate the fast energy-momentum2005

equilibrating collisions from the slow particle number changing inelastic collisions.2006

This approach makes it possible to explore the rates of inelastic collision and com-2007

pare the relaxation times of particle production in all relevant reactions with the2008

Universe expansion rate at a fixed temperature which governs the shape of particle2009

distributions.2010
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It is common to refer to particle freeze-out as the epoch where a given type of2011

particle ceases to interact with other particles. In this situation the particle abundance2012

decouples from the cosmic plasma, a chemical nonequilibrium and even complete2013

abundance disappearance of this particle can accompany this; the condition for the2014

given reaction 1 + 2→ 3 to decouple is2015

τ12→3(Tf ) = 1/H(Tf ), (2.70)

where Tf is the freeze-out temperature.2016

In the epoch of interest, 150MeV > T > 10MeV, the Universe is dominated2017

by radiation and effectively massless matter behaving like radiation. The Hubble2018

parameter can be obtained from the Hubble equation and written as [53]2019

H2 = H2
rad

(
1 +

ρπ, µ, ρ
ρrad

+
ρstrange
ρrad

)
=

8π3GN

90
ge∗T

4, H2
rad =

8πGN ρrad
3

, (2.71)

where: ge∗ is the total number of effective relativistic ‘energy’ degrees of freedom;2020

GN is the Newtonian constant of gravitation; the ‘radiation’ energy density includes2021

ρrad = ργ + ρν + ρe± for photons, neutrinos, and massless electrons(positrons). The2022

massive-particle correction is ρπ, µ, ρ = ρπ +ρµ+ρρ; and at highest T of interest, also2023

of (minor) relevance, ρstrange = ρK0 + ρK± + ρK∗ + ρη + ρη′ . Equating 1/H to the2024

computed reaction rate we obtain the freeze-out temperature Tf .2025

When considering the reaction rates and quoting Tf , we must check allowing for a2026

finite reaction time how sudden the freeze-out happens. We refer to this temperature2027

uncertainty as ∆Tf , which by a simple scale consideration can be defined by2028

∆Tf ≃
1

R(Tf )
× dT

dt
. (2.72)

R [MeV] is the value of reaction rate at freeze-out. The greater is the rate Rf the2029

sharper is the freeze-out, thus smaller ∆Tf .2030

For the temperature range 50MeV > T > 5MeV, we have 10−1 < dT/dt <2031

10−4 MeV/µs. We estimate the width of freeze-out temperature interval ∆Tf using2032

reaction rates for dt as follows2033

1

∆Tf
≡
[

1

(Γ12→3/H)

d(Γ12→3/H)

dT

]
Tf

, Γ12→3 ≡
1

τ12→3
. (2.73)

Using Eq. (2.71) and Eq. (2.69) and considering the temperature range 50MeV > T >2034

5MeV with ge∗ ≈ constant we obtain using the Boltzmann approximation to describe2035

the massive particles 1 and 32036

∆Tf
Tf
≈ Tf
m3 −m1 − 2Tf

, m3 −m1 >> Tf . (2.74)

The width of freeze-out domain is shown in the right column in Table 1. We see a2037

range of 2-10%. Therefore it is nearly justified to consider as a decoupling condition2038

in time the value of temperature at which the pertinent rate crosses the Hubble2039

expansion rate, see Fig. 22.2040

In Fig. 22 we plot the hadronic reaction relaxation times τi in the meson sector as2041

a function of temperature compared to Hubble time 1/H. We note that the weak in-2042

teraction reaction µ±+νµ → K± becomes slower compared to the Universe expansion2043

near temperature TK±

f = 33.8MeV, signaling the onset of abundance nonequilibrium2044

for K±. For T < TK±

f , the reactions µ± + νµ → K± decouples from the cosmic2045
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Fig. 22. Hadronic relaxation reaction times, see Eq. (2.68), as a function of temperature T ,
are compared to Hubble time 1/H (black solid line). At bottom the horizontal black-dashed
line is the natural (vacuum) lifespan of ρ. Published in Ref. [1] under the CC BY 4.0 license.
Adapted from Ref. [5,10]

https://creativecommons.org/licenses/by/4.0/
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Reactions Freeze-out Tf [MeV] Uncertainty ∆Tf [MeV]

µ±ν → K± Tf = 33.8MeV 3.5 MeV

e+e− → ϕ Tf = 24.9MeV 0.6MeV
µ+µ− → ϕ Tf = 23.5MeV 0.6MeV
ππ → K Tf = 19.8MeV 1.2MeV
ππ → ρ Tf = 12.3MeV 0.2MeV

Table 1. Strangeness producing reactions in primordial Universe, their freeze-out temper-
ature Tf ; and temperature uncertainty ∆Tf

plasma; the corresponding detailed balance can be broken and the decay reactions2046

K± → µ± + νµ are acting like a (small) “hole” in the strangeness abundance “pot”.2047

If other strangeness production reactions did not exist, strangeness would disappear2048

as the Universe cools below TK±

f . However, there are other reactions: l+ + l− ↔ ϕ,2049

π + π ↔ K, and ρ + π ↔ ϕ can still produce the strangeness in cosmic plasma and2050

the rate is very large compared to the weak interaction decay.2051

In Table 1 we also show the characteristic strangeness reactions and their freeze-2052

out temperatures in the primordial Universe. The intersection of strangeness reaction2053

times with 1/H occurs for l− + l+ → ϕ at Tϕ
f = 25 ∼ 23MeV, and for π + π → K2054

at TK
f = 19.8MeV, for π + π → ρ at T ρ

f = 12.3MeV. The reactions γ + γ → π and2055

ρ+π ↔ ϕ are faster compared to 1/H. However, the ρ→ π+π lifetime (black dashed2056

line in Fig. 22) is smaller than the reaction ρ+ π ↔ ϕ; in this case, most of ρ-meson2057

decays faster, thus are absent and cannot contribute to the strangeness creation in2058

the meson sector. Below the temperature T < 20MeV, all the detail balances in the2059

strange meson reactions are broken and the strangeness in the meson sector should2060

disappear rapidly, were it not for the small number of baryons present in the Universe.2061

Strangeness production and exchange rates involving hyperons2062

In order to understand strangeness in hyperons in the baryonic domain, we now2063

consider the strangeness production reaction π+N → K+Λ, the strangeness exchange2064

reaction K + N → Λ + π; and the strangeness decay Λ → N + π. The competition2065

between different strangeness reactions allows strange hyperons and anti-hyperons to2066

influence the dynamic nonequilibrium condition, including development of ⟨s−s̄⟩ ≠ 0.2067

To evaluate the reaction rate in two-body reaction 1+2→ 3+4 in the Boltzmann2068

approximation we can use the reaction cross section σ(s) and the relation [30]:2069

R12→34 =
g1g2
32π4

T

1 + I12

∫ ∞
sth

ds σ(s)
λ2(s)√

s
K1

(√
s/T

)
, (2.75)

where K1 is the Bessel function of order 1 and the function λ2(s) is defined as2070

λ2(s) =
[
s− (m1 +m2)

2
] [
s− (m1 −m2)

2
]
, (2.76)

with m1 and m2, g1 and g2 as the masses and degeneracy of the initial interacting2071

particle. The factor 1/(1 + I12) is introduced to avoid double counting of indistin-2072

guishable pairs of particles; we have I12 = 1 for identical particles and I12 = 0 for2073

others.2074

The thermal averaged cross sections for the strangeness production and exchange2075

processes are about σπN→KΛ ∼ 0.1mb and σKN→Λπ = 1 ∼ 3mb in the energy range2076

in which we are interested [84]. The cross section can be parameterized as follows:2077
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1) For the cross section σKN→Λπ we use [84]2078

σKN→Λπ =
1

2

(
σK−p→Λπ0 + σK−n→Λπ−

)
. (2.77)

Here the experimental cross sections can be parameterized as2079

σK−p→Λπ0=

1479.53mb·exp
(
−3.377

√
s

GeV

)
, for

√
sm<
√
s<3.2GeV

0.3mb·exp
(
−0.72

√
s

GeV

)
, for
√
s > 3.2GeV

(2.78)

σK−n→Λπ−=1132.27mb·exp
(
−3.063

√
s

GeV

)
, for
√
s > 1.699GeV, (2.79)

where
√
sm = 1.473GeV.2080

2) For the cross section σπN→KΛ we use [98]2081

σπN→KΛ =
1

4
× σπp→K0Λ . (2.80)

The experimental σπp→K0Λ can be approximated as follows2082

σπp→K0Λ =

 0.9mb·(
√
s−√s0)

0.091GeV , for
√
s0 <

√
s < 1.7GeV

90MeV·mb√
s−1.6GeV

, for
√
s > 1.7GeV,

(2.81)

with
√
s0 = mΛ +mK .2083

Given the cross sections, we obtain the thermal reaction rate per volume for2084

strangeness exchange reaction seen in Fig. 23. We see that near to T = 20MeV, the2085

dominant reactions for the hyperon Λ production is K + N ↔ Λ + π. At the same2086

time, the π + π → K reaction becomes slower than Hubble time and kaon K decay2087

rapidly in the primordial Universe. However, the anti-kaons K produce the hyperon2088

Λ because of the strangeness exchange reaction K + N → Λ + π in the baryon-2089

dominated Universe. We have strangeness in Λ and it disappears from the Universe2090

via the decay Λ → N + π. Both strangeness and anti-strangeness disappear because2091

of the K → π + π and Λ → N + π, while the strangeness abundance s = s̄ in the2092

primordial Universe remains.2093

Near to T = 12.9MeV the reaction Λ + π → K + N becomes slower than the2094

strangeness decay Λ↔ N + π and shows that at the low temperature the Λ particles2095

are still in equilibrium via the reaction Λ↔ N + π and little strangeness remains in2096

the Λ. Then strangeness abundance becomes asymmetric s ≫ s̄, which implies that2097

the assumption for strangeness conservation can only be valid until the temperature2098

T ∼ 13MeV. Below this temperature a new regime opens up in which the tiny2099

residual strangeness abundance is governed by weak decays with no re-equilibration2100

with mesons. Also, in view of baron asymmetry, ⟨s− s̄⟩ ≠ 0.2101

3 Neutrino Plasma2102

3.1 Neutrino properties and reactions2103

Neutrinos are fundamental particles which play an important role in the evolution of2104

the Universe. In the early Universe the neutrinos are kept in equilibrium with cosmic2105
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Fig. 23. Thermal reaction rate R per volume and time for important hadronic strangeness
production and exchange processes as a function of temperature 150MeV > T > 10MeV in
the primordial Universe. Published in Ref. [1] under the CC BY 4.0 license. Adapted from
Ref. [5,10]

plasma via the weak interaction. The neutrino-matter interactions plays a crucial2106

role in understanding of neutrinos evolution in the early Universe (such as neutrino2107

freeze-out) and the later Universe (the property of today’s neutrino background). In2108

this chapter, we will examine the neutrino coherent and incoherent scattering with2109

matter and their application in cosmology. The investigation of the relation between2110

the effective number of neutrinos N eff
ν and lepton asymmetry L after neutrino freeze-2111

out and its impact on Universe expansion is also discussed in this chapter.2112

Matrix elements for neutrino coherent & incoherent scattering2113

According to the standard model, neutrinos interact with other particles via the2114

Charged-Current(CC) and Neutral-Current(NC) interactions. Their Lagrangian can2115

be written as [99]2116

LCC =
g

2
√
2

(
jµW Wµ + jµW

†
W †µ

)
, LNC = − g

2 cos θw
jµZ Zµ, (3.1)

where g = e sin θw, W
µ and Zµ are W and Z boson gauge fields, and jµW and jµZ are2117

the charged-current and neutral-current separately. In the limit of energies lower than2118

the W (mw = 80GeV) and Z(mz = 91GeV) gauge bosons, the effective Lagrangians2119

are given by2120

LCC
eff = −GF√

2
j†W µ j

µ
W , LNC

eff = −GF√
2
j†Z µ j

µ
Z ,

GF√
2
=

g2

8m2
W

, (3.2)

where GF = 1.1664 × 10−5 GeV−2 is the Fermi constant, which is one of the im-2121

portant parameters that determine the strength of the weak interaction rate. When2122

https://creativecommons.org/licenses/by/4.0/
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neutrinos interact with matter, based on the neutrino’s wavelength, they can undergo2123

two types of scattering processes: coherent scattering and incoherent scattering with2124

the particles in the medium.2125

With coherent scattering, neutrinos interact with the entire composite system2126

rather than individual particles within the system. The coherent scattering is par-2127

ticularly relevant for low-energy neutrinos when the wavelength of neutrino is much2128

larger than the size of system. In 1978, Lincoln Wolfenstein pointed out that the co-2129

herent forward scattering of neutrinos off matter could be very important in studying2130

the behavior of neutrino flavor oscillation in a dense medium [100]. The fact that2131

neutrinos propagating in matter may interact with the background particles can be2132

described by the picture of free neutrinos traveling in an effective potential.2133

For incoherent scattering, neutrinos interact with particles in the medium indi-2134

vidually. Incoherent scattering is typically more prominent for high-energy neutri-2135

nos, where the wavelength of neutrino is smaller compared to the spacing between2136

particles. Study of incoherent scattering of high-energy neutrinos is important for2137

understanding the physics in various astrophysical systems (e.g. supernova, stellar2138

formation) and the evolution of the early Universe.2139

In this section, we discuss the coherent scattering between long wavelength neu-2140

trinos and atoms, and study the effective potential for neutrino coherent interaction.2141

Then we present the matrix elements that describe the incoherent interaction between2142

high energy neutrinos and other fundamental particles in the early Universe. Under-2143

standing these matrix elements is crucial for comprehending the process of neutrino2144

freeze-out in the early Universe.2145

Long wavelength limit of neutrino-atom coherent scattering2146

According to the standard cosmological model, the Universe today is filled with the2147

cosmic neutrinos with temperature T 0
ν = 1.9K = 1.7 × 10−4 eV. The average mo-2148

mentum of present-day relic neutrinos is given by ⟨p0ν⟩ ≈ 3.15T 0
ν and the typical2149

wavelength λ0ν = 2π/⟨p0ν⟩ ≈ 2.3× 105 Å, which is much larger than the radius at the2150

atomic scale, such as the Bohr radius Ratom = 0.529 Å. In this case we have the long2151

wavelength condition λν ≫ Ratom for cosmic neutrino background today.2152

Under the condition λν ≫ Ratom, when the neutrino is scattering off an atom,2153

the interaction can be coherent scattering [101,102,103]. According to the principles2154

of quantum mechanics, with neutrino scattering it is impossible to identify which2155

scatters the neutrino interacts with and thus it is necessary to sum over all possible2156

contributions. In such circumstances, it is appropriate to view the scattering reaction2157

as taking place on the atom as a whole, i.e.,2158

ν +Atom −→ ν +Atom. (3.3)

Considering a neutrino elastic scattering off an atom which is composed of Z2159

protons, N neutrons and Z electrons. For the elastic neutrino atom scattering, the2160

low-energy neutrinos scatter off both atomic electrons and nucleus. For nucleus parts,2161

we consider that the neutrinos interact via the Z0 boson with a nucleus as2162

ν +AZ
N −→ ν +AZ

N . (3.4)

In this process a neutrino of any flavor scatters off a nucleus with the same strength.2163

Therefore, the scattering will be insensitive to neutrino flavor. On the other hand,2164

the neutrons can also interact via the W± with nucleus as2165

νl +AZ
N −→ l− +AZ+1

N , (3.5)
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which is a quasi-elastic process for neutrino scattering with the nucleus; we have2166

AZe

N → AZe+1
N . Since this process will change the nucleus state into an excited one,2167

we will not consider its effect here. For detail discussion pf quasi-elastic scattering see2168

[104].2169

For atomic electrons, the neutrinos can interact via the Z0 and W± bosons with2170

electrons for different flavors, we have2171

νe + e− −→ νe + e− (Z0, W± exchange), (3.6)

νµ,τ + e− −→ νµ,τ + e− (Z0 exchange). (3.7)

Because of the fact that the coupling of νe to electrons is quite different from that of2172

νµ,τ , one may expect large differences in the behavior of νe scattering compared to2173

the other neutrino types.2174

Neutrino-atom coherent scattering amplitude & matrix element2175

This section considers how a neutrino scatters from a composite system, assumed2176

to consist of N individual constituents at positions xi, i = 1, 2, ....N . Due to the2177

superposition principle, the scattering amplitude Msys(p
′,p) for scattering from an2178

incoming momentum p to an outgoing momentum p′ is given as the sum of the2179

contributions from each constituent [105,103]:2180

Msys(p
′,p) =

N∑
i

Mi(p
′,p) eiq·xi , (3.8)

where q = p′−p is the momentum transfer and the individual amplitudesMi(p
′,p)2181

are added with a relative phase factor determined by the corresponding wave function.2182

In principle, due to the presence of the phase factors, major cancellation may take2183

place among the terms for the condition |q|R≫ 1, where R is the size of the composite2184

system, and the scattering would be incoherent. However, for the momentum small2185

compared to the inverse target size, i.e., |q|R ≪ 1, then all phase factors may be2186

approximated by unity and contributions from individual scatters add coherently.2187

In the case of neutrino coherent scattering with an atom: If we consider sufficiently2188

small momentum transfer to an atom from a neutrino which satisfies the coherence2189

condition, i.e., |q|Ratom ≪ 1, then the relevant phase factors have little effect, allowing2190

us to write the transition amplitude as [106]2191

Matom =
∑
t

GF√
2
[u(p′ν)γµ (1− γ5)u(pν)]

[
u(p′t)γ

µ
(
ctV − ctAγ5

)
u(pt)

]
, (3.9)

where t is all the target constituents (Z protons, N neutrons and Z electrons). The2192

transition amplitude includes contributions from both charged and neutral currents,2193

with2194

Charged Current : ctV = ctA = 1 (3.10)

Neutral Current : ctV = I3 − 2Q sin2 θw, ctA = I3 (3.11)

where I3 is the weak isospin, θw is the Weinberg angle, and Q is the particle electric2195

charge.2196

Considering the target can be regarded as an equal mixture of spin states sz =2197

±1/2, and we can simplify the transition amplitude by summing the coupling con-2198
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Electron (Z0 boson) Electron (W± boson) Proton (uud) Neutron (udd)

CL −1 + 2 sin2 θw 2 1− 2 sin2 θw −1

CR 2 sin2 θw 0 −2 sin2 θw 0

Table 2. The coupling constants for neutrino scattering with proton, neutron, and electron.

stants of the constituents [102,107]. We have2199

Matom =
GF

2
√
2
[u(p′ν)γµ (1− γ5)u(pν)][

u(p′a)
∑
t

(CL + CR)t γ
µ u(pa)− u(p′a)

∑
t

(CL − CR)t γ
µγ5u(pa)

]
,

(3.12)

where the u(pν), u(p
′
ν) are the initial and final neutrino states and u(pa), u(p

′
a) are2200

the initial and final states of the target atom. The coupling coefficients CL and CV2201

are defined as2202

CL = cV + cA, CR = cV − cA, (3.13)

where the coupling constants for neutrino scattering with proton, neutron, and elec-2203

tron are given by Table 2. The coupling constants for νµ,τ are the same as for the νe,2204

excepting the absence of a charged current in neutrino-electron scattering.2205

Given the neutrino-atom coherent scattering amplitude Eq.(3.12), the transition2206

matrix element can be written as2207

|Matom|2 =
G2

F

8
Lneutrino
αβ Γαβ

atom, (3.14)

where the neutrino tensor Lneutrino
αβ is given by2208

Lneutrino
αβ = Tr

[
γα (1− γ5) (/pν +mν)γβ (1− γ5) (/p′ν +mν)

]
= 8

[
(pν)α (p′ν)β + (pν)

′
α (pν)β − gαβ(pν · p′ν) + iϵασβλ(pν)

σ(p′ν)
λ
]
, (3.15)

and the atomic tensor Γαβ
atom can be written as2209

Γαβ
atom = Tr

[
(CLRγ

α − C ′LRγ
αγ5)(/pa +Ma)(CLRγ

β − C ′LRγ
βγ5)(/p

′
a
+Ma)

]
= 4

{
(C2

LR + C ′2LR)
[
(pa)

α (p′a)
β + (pa)

′α (pa)
β
]

− gαβ
[
(C2

LR − C ′2LR)(pa · p′a)− (C2
LR − C ′2LR)M

2
a

]
+ 2iCLRC

′
LRϵ

ασ′βλ′
(pa)σ′(p′a)

λ′
}
, (3.16)

where Ma is the target atom’s mass (Ma = AMnucleon, A = Z + N), the coupling2210

constants CLR and C ′LR are defined by2211

CLR =
∑
t

(CL + CR)t, C ′LR =
∑
t

(CL − CR)t. (3.17)
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Substituting Eq.(3.15) and Eq.(3.16) into Eq.(3.14), then the transition matrix ele-2212

ment for coherent elastic neutrino atom scattering is given by:2213

|Matom|2 =
G2

F

8
Lneutrino
αβ Γαβ

atom

= 8G2
F

[
(CLR + C ′LR)

2 (pν · pa)(p′ν · p′a) + (CLR − C ′LR)
2 (pν · p′a)(p′ν · pa)

− (C2
LR − C ′2LR)M

2
a (pν · p′ν)

]
. (3.18)

Taking the atom at rest in the laboratory frame, and considering small momentum2214

transfer to an atom from a neutrino, i.e., q2 = (pν − p′ν)2 = (p′a − pa)2 ≪ M2
a , we2215

have2216

pν · pa = Eν Ma, (3.19)

p′ν · pa = E′ν Ma ≈ Eν Ma, (3.20)

p′ν · p′a = p′ν · (pa + q) = E′ν Ma

[(
1 +

q0
Ma

)
− |p

′
ν ||q|
Ma

cos θ

]
≈ Eν Ma, (3.21)

pν · p′a = pν · (pa + q) = Eν Ma

[(
1 +

q0
Ma

)
− |p

′
ν ||q|
Ma

cos θ

]
≈ Eν Ma. (3.22)

Then the transition matrix element for neutrino coherent elastic scattering off a rest2217

atom can be written as2218

|Matom|2 = 8G2
F MaE

2
ν

[
C2

LR

(
1 +
|pν |2

E2
ν

cos θ

)
+ 3C ′2LR

(
1− |pν |

2

3E2
ν

cos θ

)]
, (3.23)

which is consistent with the results in papers [101,102,103,108]. From the above for-2219

mula we found that the scattering matrix neatly divides into two distinct components:2220

a vector-like component (first term) and an axial-vector like component (second term).2221

They have different angular dependencies: the vector part has a
(
|pν |2/E2

ν cos θ
)
de-2222

pendence, while the axial part has a
(
−|pν |2/3E2

ν cos θ
)
behavior. However, in the case2223

of the nonrelativistic neutrino, both angular dependencies can be neglected because2224

of the limit pν ≪ mν .2225

Next, we consider the nonrelativistic electron neutrino νe scattering off an general2226

atom with Z protons, N neutrons and Z electrons. Then from Eq. (3.23), the matrix2227

element can be written as2228

|Matom|2 = 8G2
F MaE

2
ν

[
(3Z −A)2

(
1 +
|pν |2

E2
ν

cos θ

)
+ 3 (3Z −A)2

(
1− |pν |

2

3E2
ν

cos θ

)]
≈ 32G2

F MaE
2
ν (3Z −A)

2
, (3.24)

where we neglect the angular dependence because of the nonrelativistic limit, and the2229

coefficient (3Z −A)2 for different target atoms are given in Table 3.2230

For nonrelativistic νµ,τ , the scattering matrix is given by2231

|Matom|2 = 8G2
F MaE

2
ν

[
(A− Z)2

(
1 +
|pν |2

E2
ν

cos θ

)
+ 3 (A− Z)2

(
1− |pν |

2

3E2
ν

cos θ

)]
≈ 32G2

F MaE
2
ν (Z −A)

2
, (3.25)

where the coefficient (Z −A)2 different target atoms are given in Table 3. The transi-2232

tion matrix for νe differs from that of νµ,τ ; this is due to the charged current reaction2233
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Neutrino Flavor: νe νµ,τ

Target Atom (3Z −A)2 (Z −A)2

H2(A = 2, Z = 2) 16 0
3He(A = 3, Z = 2) 9 1
HD(A = 3, Z = 2) 9 1
4
2He(A = 4, Z = 2) 4 4
DD(A = 4, Z = 2) 4 4
12
6 C(A = 12, Z = 6) 36 36

Table 3. The coefficients for transition amplitude and scattering probability of νe and
νµ,τ coherent elastic scattering off different target atoms. The definition of atomic mass is
A = Z +N , where Z and N are the number of protons and neutron respectively.

with the atomic electrons. Furthermore, the neutral current interaction for the elec-2234

tron and proton will cancel each other because of the opposite weak isospin I3 and2235

charge Q. As a result, the coherent neutrino scattering from an atom is sensitive to2236

the method of the neutrino-electron coupling.2237

Mean field potential for neutrino coherent scattering2238

When neutrinos are propagating in matter and interacting with the background par-2239

ticles, they can be described by the picture of free neutrinos traveling in an effective2240

potential [100]. In the following we describe the effective potential between neutrinos2241

and the target atom, and generalize the potential to the case of neutrino coherent2242

scattering with a multi-atom system.2243

Let us consider a neutrino elastic scattering off an atom which is composed of Z2244

protons, N neutrons and Z electrons. For the elastic neutrino atom scattering, the low-2245

energy neutrinos are scattering off both atomic electrons and the nucleus. Considering2246

the effective low-energy CC and NC interactions, the effective Hamiltonian in current-2247

current interaction form can be written as2248

Hatom
I = Helectron

I +Hnucleon
I =

GF√
2

(jµ J µ
electron + jµ J µ

nucleon) , (3.26)

where J µ
nucleon denote the hadronic current for nucleus, jµ and J µ

electron are the lepton2249

currents for neutrino and electron respectively. According to the weak interaction2250

theory, the lepton current for neutrino and electron can be written as2251

jµ = ψν γµ (1− γ5) ψν , (3.27)

J µ
electron = ψe γµ (1− γ5) ψe (W± exchange), (3.28)

J µ
electron = ψe γµ (ceV − ceAγ5) ψe (Z0 exchange), (3.29)

where ψν and ψe represent the spinor for the neutrino and electron, respectively.2252

From Eq. (3.11) the coupling coefficient for electrons are ceV = −1/2 + 2 sin2 θw and2253

ceA = −1/2. The hadronic current for is given by the expression [99]2254

J µ
nucleon ≡ ψt γ

µ
(
ctV − ctAγ5

)
ψt, (3.30)

where subscript tmeans the target constituents (protons and neutrons). From Eq. (3.11)2255

the coupling constants for proton(uud) and neutron(udd) are given by2256

cpV =
1

2
− 2 sin2 θw, cpA =

1

2
, proton (3.31)

cnV = −1

2
cnA = −1

2
, neutron. (3.32)
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To obtain the effective potential for atom, we need to average the effective Hamil-2257

tonian over the electron and nucleon background. For the neutrino-nucleon (pro-2258

ton,neutron) interaction, we only have the neutral current interaction via Z0 boson.2259

However, for the neutrino-electron interaction, we can have charged-current or neu-2260

tral current interaction depending on the flavor or neutrino. In following, we consider2261

interaction between νe and electrons first which includes both charged and neutral-2262

currents interaction for general discussion.2263

Considering atomic electrons as a gas of unpolarized electrons with a statistical dis-2264

tribution function f(Ee), the effective potential for neutrino-electron interaction can2265

be obtained by averaging the effective Hamiltonian over the electron background [99]2266

⟨Helectron
I ⟩ = GF√

2

∫
d3pe

(2π)32Ee
f(Ee, T )

[
ψν(x) γµ (1− γ5) ψν(x)

]
× 1

2

∑
he=±1

⟨ e−(pe, he)|ψe γ
µ
(
(1 + ceV )−(1 + ceA)γ5

)
ψe|e−(pe, he)⟩, (3.33)

where he denotes the helicity of the electron. The average over helicity of the electron2267

matrix element can be calculated with Dirac spinor and gamma matrix traces [99].2268

Then the average effective Lagrangian can be written as2269

⟨Helectron
I ⟩ = GF√

2
(1 + ceV )

∫
d3pe
(2π)3

f(Ee)

[
ψν(x)

γµpeµ
Ee

(1− γ5) ψν(x)

]
=
GF√
2
(1 + ceV )

[∫
d3pe
(2π)3

f(Ee)

(
γ0 − γ⃗ · p⃗e

Ee

)]
ψν(x) (1− γ5)ψν(x)

=

[
GF√
2
(1 + ceV )ne

]
ψν(x)γ

0 (1− γ5)ψν(x), (3.34)

where ne is the number density of the electron. In this case, the effective potential2270

for neutrino-atomic electron interaction can be written as2271

V electron
I =

GF√
2
(1 + ceV )ne =

GF√
2

(
4 sin2 θw + 1

)
ne. (3.35)

The same method can be applied to the neutrino-nuclear interactions. Following the2272

same approach and averaging the effective neutrino-nuclear Hamiltonian over the2273

nuclear background, the effective potential experienced by a neutrino in a background2274

of neutron/proton is given by [99]2275

V proton
I =

GF√
2

(
1− 4 sin2 θw

)
np, V neutron

I = −GF√
2
nn, (3.36)

where np and nn represent the number density of proton and neutron. Combining2276

the neutron and proton potential together, we define the effective nucleon potential2277

experienced by neutrino as2278

V nucleon
I ≡ −GF√

2

[
1−

(
1− 4 sin2 θw

)
ξ

]
nn, ξ = np/nn, (3.37)

where ξ is the ratio between proton and neutron number density.2279

In our study, we generalize the effective potential to the case of neutrino coherent2280

scattering with multi-atom system, we consider a neutrino coherent forward scatters2281

from a spherical symmetric system which is composed by atoms. In this case, the2282

neutrino scatters off every atom, and it is impossible to identify which scatterer the2283
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neutrino interacts with and thus it is necessary to sum over all possible contributions2284

from each atom. In such circumstances, it is appropriate to assume that the number2285

density of electrons and neutrons can be written as2286

ne = Ze

(
Natom

V

)
, and nn = N

(
Natom

V

)
, (3.38)

where Natom is the number of atoms inside the system, V is the volume of system,2287

Z is the number of electrons, and N is the number of neutrons. Then the effective2288

potential is given by2289

VI = V electron
I + V nucleon

I

=
GF√
2

(
Natom

V

){(
4 sin2 θw ± 1

)
Ze −

[
1−

(
1− 4 sin2 θw

)
ξ

]
N

}
, (3.39)

where the + sign is for electron neutrinos νe and the − sign is for muon(tau) neutrinos2290

νµ,τ , separately. From Eq. (3.39), it shows that the effective potential depends on the2291

number density of electrons and nucleons contained within the wavelength. Thus2292

by increasing the atoms contained in the wavelength or selecting different atoms as2293

targets, we can enhance the effective potential and may be able to provide a sensitive2294

way to detect the cosmic neutrino background. Beside the detection of cosmic neutrino2295

background, the effective potential for multi-atom can also provide new approaches2296

for studying other aspects of neutrino physics in the future.2297

Matrix elements of incoherent neutrino scattering2298

To determine the freeze-out temperature (chemical/kinetic freeze-out) for a given2299

flavor of neutrinos, we need to know all the elastic and inelastic interaction pro-2300

cesses in the early Universe and compare their interaction rate with Hubble expan-2301

sion rate. In this section we summarize the matrix elements for the neutrino anni-2302

hilation/production processes and elastic scattering processes which are relevant for2303

investigating neutrino freeze-out. These matrix elements serve as one of the funda-2304

mental ingredients for solving the Boltzmann equation [19].2305

Considering the Universe with temperature T ≈ O(MeV), the particle species in2306

cosmic plasma are given by:2307

Particle species in plasma :
{
γ, l−, l+, νe, νµ, ντ , ν̄e, ν̄µ, ν̄τ

}
, (3.40)

where l± represents the charged leptons. In this case, neutrinos can interact with2308

all these particles via weak interactions and remain in equilibrium. In Table 4 and2309

Table 5 we present the matrix elements |M |2 for different weak interaction processes2310

in the early Universe.2311

In the calculation of transition amplitude, we use the low energy approximation2312

for W± and Z0 massive propagators, i.e.2313

Z0 boson :
−i
[
gµν − qµqν

M2
z

]
q2 −M2

z

≈ igµν
M2

z

, W± boson :
−i
[
gµν − qµqν

M2
w

]
q2 −M2

w

≈ igµν
M2

w

,

(3.41)

and consider the tree-level Feynman diagram contributions only. Then, following the2314

Feynman rules of weak interaction [109], we obtain the matrix elements |M |2 for2315

different interaction processes.2316
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Annihilation
& Production Transition Amplitude |M |2

l− + l+ −→ νl + ν̄l 32G2
F

[ (
1 + 2 sin2 θw

)2
(p1 · p4) (p2 · p3) +

(
2 sin2 θw

)2
(p1 · p3) (p2 · p4)

+2 sin2 θw
(
1 + 2 sin2 θw

)
m2

l (p3 · p4)
]

l′− + l′+ −→ νl + ν̄l 32G2
F

[ (
1− 2 sin2 θw

)2
(p1 · p4) (p2 · p3) +

(
2 sin2 θw

)2
(p1 · p3) (p2 · p4)

−2 sin2 θw
(
1− 2 sin2 θw

)
m2

l′ (p3 · p4)
]

νl + ν̄l −→ νl + ν̄l 32G2
F

[
(p1 · p4) (p2 · p3)

]
νl′ + ν̄l′ −→ νl + ν̄l 32G2

F

[
(p1 · p4) (p2 · p3)

]
Table 4. The transition amplitude for different annihilation and production processes. The
definition of particle number is given by 1 + 2 ↔ 3 + 4, where l, l′ = e, µ, τ (l ̸= l′).

Elastic (νe)
Scattering Process Transition Amplitude |M |2

νl + l− −→ νl + l− 32G2
F

[ (
1 + 2 sin2 θw

)2
(p1 · p2) (p3 · p4) +

(
2 sin2 θw

)2
(p1 · p4) (p2 · p3)

−2 sin2 θw
(
1 + 2 sin2 θw

)
m2

l (p1 · p3)
]

νl + l+ −→ νl + l+ 32G2
F

[ (
1 + 2 sin2 θw

)2
(p1 · p4) (p2 · p3) +

(
2 sin2 θw

)2
(p1 · p2) (p3 · p4)

−2 sin2 θw
(
1 + 2 sin2 θw

)
m2

l (p1 · p3)
]

νl+ l′− −→ νl+ l′− 32G2
F

[ (
1− 2 sin2 θw

)2
(p1 · p2) (p3 · p4) +

(
2 sin2 θw

)2
(p1 · p4) (p2 · p3)

+2 sin2 θw
(
1− 2 sin2 θw

)
m2

l′ (p1 · p3)
]

νl + l′+ −→ νl + l′+ 32G2
F

[ (
1− 2 sin2 θw

)2
(p1 · p4) (p2 · p3) +

(
2 sin2 θw

)2
(p1 · p2) (p3 · p4)

+2 sin2 θw
(
1− 2 sin2 θw

)
m2

l′ (p1 · p3)
]

νl + νl −→ νl + νl
1
2!

1
2!

× 32G2
F

[
4 (p1 · p2) (p3 · p4)

]
νl + ν̄l −→ νl + ν̄l 32G2

F

[
4 (p1 · p4) (p2 · p3)

]
νl + νl′ −→ νl + νl′ 32G2

F

[
(p1 · p2) (p3 · p4)

]
νl + ν̄l′ −→ νl + ν̄l′ 32G2

F

[
(p1 · p4) (p2 · p3)

]
Table 5. The transition amplitude for different elastic scattering processes. The definition
of particle number is given by 1 + 2 ↔ 3 + 4, where l, l′ = e, µ, τ (l ̸= l′).
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3.2 Boltzmann-Einstein Equation2317

We now begin a detailed study of the nonequilibrium properties of the neutrino freeze-2318

out and it’s impact on the effective number of neutrinos, an important cosmological2319

observable. We model the dynamics of the neutrino freeze-out using the Boltzmann-2320

Einstein equation, also called the general relativistic Boltzmann equation, which de-2321

scribes the dynamics of a gas of particles that travel on geodesics in an general2322

spacetime, with the only interactions being point collisions [110,111,49,112],2323

pα∂xαf −
3∑

j=1

Γ j
µνp

µpν∂pjf = C[f ] . (3.42)

Here Γα
µν is the affine connection (Christoffel symbols) corresponding to a metric gαβ ,2324

the distribution function f is a function of four-momentum on the mass shell, i.e.,2325

that satisfy2326

gαβp
αpβ = m2 . (3.43)

Here and in the following, repeated Greek indices are summed from 0 to 3. C[f ] is the2327

collision operator and encodes all information about point interactions between par-2328

ticles. If C[f ] vanishes then the equation is called the Vlasov equation and describes2329

particles that move on geodesics (or free stream). At this point, we are not invoking2330

the assumption that the distribution function has a kinetic equilibrium form, nor are2331

we assuming a FLRW universe; in this section we will discuss general properties of2332

Eq. (3.42) before turning to the study of neutrino freeze-out in subsequent sections.2333

We will need the following definitions of entropy current sµ, stress-energy tensor Tµν ,2334

and number current nµ,2335

sµ = −
∫

(f ln(f)± (1∓ f) ln(1∓ f)) pµdπ , (3.44)

Tµν =

∫
pµpνfdπ , (3.45)

nν =

∫
fpνdπ , (3.46)

dπ =

√
−g
p0

gpd
3p

8π3
, (3.47)

where dπ is the volume element on the future mass shell, g denotes the determinant of2336

the metric tensor, p0 = g0αp
α, non-bold p are four-momenta while bold p denotes the2337

spacial components, the upper signs are for fermions and the lower signs for bosons.2338

See Appendix A for the derivation of the form of the volume element.2339

Collision Operator2340

We now elaborate on the form of the collision operator. Our presentation is an ex-2341

panded version of the survey in [112]. Suppose we have a collection of distinct particle2342

and antiparticle types C with distribution functions fC , C ∈ C, and they partake in2343

some number of reactions or interactions I = nB1
B1, nB2

B2... −→ nA1
A1, nA2

A2...,2344

Ai ∈ C distinct and Bj ∈ C distinct, where nAi
is the number of particles of type Ai2345

occurring in the interaction (all nonzero) and similarly for nBi
. Given an interaction,2346

I, we let r(I) be the collection of particle types that are reactants in the interaction,2347

p(I) be the collection of particle types that are products, and we let
←−
I denote the2348

reverse reaction, i.e., with reactants and products reversed. We let int denote the set2349
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of all interactions and, for any given species A, int(A) be the set of all interactions2350

involving A as a product. We will assume that
←−
I ∈ int whenever I ∈ int. With these2351

conventions, the collision operator for particle type A takes the form2352

C[fA] (3.48)

=
∑

I∈int(A)

nA∏
i nAi !

∏
j nBj !

∫ ∏
j

nBj∏
l=1

fBj (p
l
Bj

)

(∏
i

nAi∏
k=1

fAi(pkAi
)

)
W I(plBj

, pkAi
)

−

(∏
i

nAi∏
k=1

fAi(p
k
Ai
)

)∏
j

nBj∏
l=1

fBj (plBj
)

W
←−
I (pkAi

, plBj
)

 δ(∆p)∏
i

d̂V Ai

∏
j

dVBj ,

fC = 1∓ fC , ∆p =
∑
i

nAi∑
k=1

pkAi
−
∑
j

nBj∑
l=1

plBj
,

d̂V Ai
= π̃Ai

nAi∏
k=2

1

2
dπk

Ai
, dVBj

= (2π)4
nBj∏
l=1

1

2
dπl

Bj
,

π̃Ai =
1

2
if Ai = A and π̃Ai =

1

2
dπ1

Ai
otherwise ,

dπr
C =

√
−g

(prC)0

gCd
3pr

C

8π3
, p0 = g0αp

α.

The integrations are over the future mass shells of all the particles, so the p are2353

related by gαβp
αpβ = m2. The factorials take into account the indistinguishably2354

of the particles and prevent one from over counting the independent ways a re-2355

action can happen when integrating over momentum. The terms fA are due to2356

quantum statistics and account for Fermi repulsion or Bose attraction (again, up-2357

per signs are for fermions and lower signs for bosons). W I(plBj
, pkAi

), an abbreviation2358

for W I(p1B1
, p2B1

, ..., p
nB1

B1
, p1B2

, ..., p1A1
, ...), is the scattering kernel that encodes the2359

probability of nBj
particles of types Bj with momenta plBj

interacting to form nAi
2360

particles of types Ai with momenta pkAi
in the process I = nB1

B1, nB2
B2, ... −→2361

nA1
A1, nA1

A1, ..., and so it is non-negative. The delta function enforces conserva-2362

tion of four-momentum. The factors of (2π4) and 1
2 in the definitions of the volume2363

elements come from normalization of the transition functions from quantum scatter-2364

ing calculations. For computational purposes, the expression (3.48) must be further2365

simplified, taking into account the structure of each interaction. For example, see2366

Appendix C for a detailed study of the collision operator in the case of neutrino2367

freeze-out.2368

As defined, C[fA] is a function of p1Ai
where A = Ai. The choice to not integrate2369

over p1Ai
rather than any of the other pkAi

is completely arbitrary, but makes no2370

difference in the result since the interaction does not depend on how we number the2371

participating particles. In terms of the scattering kernels, this means we assume W I
2372

has the property2373

W I(pσ1

A1
, pσ2A1

, ...) =W I(p1A1
, p2A1

, ...) , (3.49)

for any permutation σ, and similarly for any other permutation with one of the2374

collections pkAi
or plBj

for any choice of i or j. For economy of notation in these2375

derivations, we will employ the additional abbreviations for a given interaction I =2376
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nBi
Bi −→ nAi

Ai:2377

fp,I(p
k
Ai
) ≡ fp,I(p1Ai

, p2Ai
, ..., p

nAi

Ai
) ≡

∏
i

nAi∏
k=1

fAi
(pkAi

) , (3.50)

fp,I(pkAi
) = fp,I(p1Ai

, p2Ai
, ..., p

nAi

Ai
) =

∏
i

nAi∏
k=1

fAi(pkAi
) ,

fr,I(p
l
Bj

) ≡ fr,I(p1Bj
, p2Bj

, ..., p
nBj

Bj
) ≡

∏
j

nBj∏
l=1

fBj
(plBj

) ,

fr,I(plBj
) = fr,I(p1Bj

, p2Bj
, ..., p

nBj

Bj
) =

∏
j

nBj∏
l=1

fBj (plBj
) ,

nI =
∏
i

nAi
!
∏
j

nBj
! ,

d̂V I = δ(∆p)
∏
i

d̂V Ai

∏
j

dVBj ,

dVI = δ(∆p)
∏
i

dVAi

∏
j

dVBj
,

where the r and p sub and superscripts stand for reactants and products respectively.2378

See Appendix A for more information on the precise meaning and properties of the2379

delta function factors.2380

In the following subsections we derive several important properties of the equation2381

(3.42). While in principle these properties are well known [110,111,49,112], here we2382

prove them at a level of generality that, to the authors knowledge, is not available2383

in other references, i.e., for a general collection of interactions as encapsulated in2384

Eq. (3.48). We note that Riemannian normal coordinates will a key tool in these2385

derivations. These are coordinates centered at a chosen point, x, in spacetime wherein2386

the geodesics through x are straight lines in the coordinate system and the derivatives2387

of the metric in the coordinate system vanish at x. In particular, the Christoffel2388

symbols vanish at x; see, e.g., page 42 in [113] or pages 72-73 of [114].2389

Conserved Currents2390

Suppose all the interactions of interest conserve some charge bA, i.e.,2391 ∑
A∈p(I)

nAbA =
∑

A∈r(I)

nAbA (3.51)

for all I ∈ int. We can construct and 4-vector current corresponding to this charge2392

as follows:2393

Bµ =
∑
A

bAN
µ
A , (3.52)

where Nµ
A are the number currents of the particle species Eq. (3.46). In this section2394

we show that Bµ has vanishing divergence, i.e., a Bµ satisfies a conservation law.2395

For any point x in spacetime, by transforming to Riemannian normal coordinates2396

at x and using (3.42) along with the fact that the first derivatives of the metric vanish2397

at x, one can compute2398

∇µN
µ
A =

∫
pµ∂xµfdπA =

∫
C[fA]dπA (3.53)
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at x. The left and right hand sides are scalars and therefore they are equal in any2399

coordinate system. Noting this, we can then calculate2400

∇µB
µ =

∑
A

bA

∫
C[fA]dπA =

∑
A

∑
I∈int(A)

nAbA
nI

∫ ∫ (
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)

(3.54)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
d̂V IdπA

=
∑
A

∑
I∈int(A)

nAbA
nI

∫ (
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI .

Now observe that, for any collection of finite sets Dj indexed by a finite set J with2401 ⋃
j∈J Dj = D and any function h : J ×D → Rm we have2402 ∑

j∈J

∑
x∈Dj

h(j, x) =
∑
x∈D

∑
{j:x∈Dj}

h(j, x) . (3.55)

Using this fact, we can switch the order of the sums to obtain2403

∇µB
µ =

∑
I∈int

∑
A∈p(I)

nAbARI , (3.56)

RI ≡
1

nI

∫ (
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)− fp,I(pkAi

)fr,I(plBj
)W
←−
I (pkAi

, plBj
)
)
dVI .

The sum over all interactions splits over a sum over symmetric interactions, ints, and2404

a sum over asymmetric interactions. For each asymmetric interaction, pair it up with2405

its reverse and arbitrarily choose one of them to call the forward direction. Let the2406

set of these forward interactions be denoted
−→
int. Then the sum in Eq. (3.56) splits as2407

follows2408

∇µB
µ =

∑
I∈ints

RI

∑
A∈p(I)

nAbA+
∑
I∈−→int

RI

∑
A∈p(I)

nAbA+
∑
I∈−→int

R←−
I

∑
A∈p(

←−
I )

nAbA . (3.57)

For every I ∈ ints we have W I =W
←−
I , fAi

= fBi
, and fAi = fBi , and therefore2409

RI =
1

nI

(∫
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)dVI (3.58)

−
∫
fp,I(p

k
Ai
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)dVI

)
=

1

nI

(∫
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)dVI

−
∫
fr,I(p

k
Ai
)fp,I(plBj

)W I(pkAi
, plBj

)dVI

)
=0 ,

as the two integrals differ only by a relabeling of integration variables. Asymmetric2410

interactions satisfy2411

R←−
I
=

1

nI

∫ (
fp,I(p

k
Ai
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)− fr,I(plBj

)fp,I(pkAi
)W I(plBj

, pkAi
)
)
dVI

=−RI . (3.59)
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Combining this with Eq. (3.51) we find2412

∇µB
µ =

∑
I∈−→int

RI

 ∑
A∈p(I)

nAbA −
∑

A∈p(
←−
I )

nAbA

 (3.60)

=
∑
I∈−→int

RI

 ∑
A∈p(I)

nAbA −
∑

A∈r(I)

nAbA

 = 0 .

Therefore Bµ is a conserved current, as claimed.2413

Divergence Freedom of Stress Energy Tensor2414

The Einstein equation implies that the total stress energy tensor of all matter coupled2415

to gravity is divergence free. Here we show that the relativistic Boltzmann stress2416

energy tensor Eq. (3.45) has this property, and is therefore a natural candidate matter2417

model for coupling to gravity.2418

First use Riemannian normal coordinates to compute2419

∇µT
µν =

∑
A

∫
pνAC[fA]dπA (3.61)

=
∑
A

∑
I∈int(A)

nA
nI

∫
(p1Aℓ

)ν
(
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
) (3.62)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI ,

where ℓ is the unique index such that Aℓ = A (ℓ depends on A and I, but we2420

suppress this dependence for simplicity of notation). Using Eq. (3.55) we can switch2421

the summation order to get2422

∇µT
µν =

∑
I∈int

∑
A∈p(I)

nA
nI

∫
(p1Aℓ

)ν
(
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
) (3.63)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI .

By Eq. (3.49) and the surrounding remarks, we can rewrite this as2423

∇µT
µν =

∑
I∈int

∑
A∈p(I)

1

nI

nA∑
a=1

∫
(paAℓ

)ν
(
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
) (3.64)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI

=
∑
I∈int

1

nI

∑
ℓ

nAℓ∑
a=1

∫
(paAℓ

)ν
(
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI .

As before, we can break the sum over I into a sum over symmetric processes and2424

two other sums over forward and backward asymmetric processes respectively. For a2425



82 Will be inserted by the editor

symmetric interaction I =
←−
I and fAi = fBi for all i, hence2426

∑
ℓ

nAℓ∑
a=1

∫
(paAℓ

)ν
(
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
) (3.65)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI

=

∫ ∑
ℓ

nAℓ∑
a=1

(
(paAℓ

)ν − (paBℓ
)ν
)
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)dVI

=0 ,

due to the delta function δ(∆p) in the volume form dVI . Therefore the terms in2427

the sum Eq. (3.64) corresponding to symmetric interactions vanish. For every pair of2428

forward and backward asymmetric interactions we obtain2429

∑
ℓ

nAℓ∑
a=1

∫
(paAℓ

)ν
(
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
) (3.66)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI

+
∑
ℓ̃

nB
ℓ̃∑

c=1

∫
(pcBℓ̃

)ν
(
fp,I(p

k
Ai
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)

−fr,I(plBj
)fp,I(pkAi

)W I(plBj
, pkAi

)
)
dVI

=

∫ ∑
ℓ

nAℓ∑
a=1

(paAℓ
)ν −

∑
ℓ̃

nB
ℓ̃∑

c=1

(pcBℓ̃
)ν

 fr,I(p
l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)dVI

+

∫ ∑
ℓ̃

nB
ℓ̃∑

c=1

(pcBℓ̃
)ν −

∑
ℓ

nAℓ∑
a=1

(paAℓ
)ν

 fp,I(p
k
Ai
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)dVI

=0 ,

again because of δ(∆p) in the volume forms. This shows ∇µT
µν = 0, as claimed.2430

Entropy and Boltzmann’s H-Theorem2431

Finally, we prove that the entropy four-current satisfies ∇µs
µ ≥ 0, known as Boltz-2432

mann’s H-theorem. This result requires the additional assumption that the interac-2433

tions are time-reversal symmetric, i.e.,2434

W I(plBj
, pkAi

) =W
←−
I (pkAi

, plBj
) (3.67)

for all I.2435

Working in Riemannian normal coordinates once again, we can compute2436

∇µs
µ =−

∑
A

∫
pµ∂xµ (fA ln (fA)± (1∓ fA) ln (1∓ fA)) dπA (3.68)

=
∑
A

∫
ln (1/fA ∓ 1)C[fA]dπA .
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Similar reasoning to the above two subsections then gives2437

∇µs
µ =

∑
I∈int

1

nI

∑
ℓ

nAℓ∑
a=1

∫
ln
(
1/fAℓ

(paAℓ
)∓ 1

) (
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)

(3.69)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI .

Once again, we break the summation into a sum over symmetric processes and two2438

other sums over forward and backward asymmetric processes respectively. Each sym-2439

metric process contributes a term of the form2440 ∫ ∑
ℓ

nAℓ∑
a=1

fr,I(p
l
Bj

)fp,I(pkAi
)
(
ln
(
1/fAℓ

(paAℓ
)∓ 1

)
(3.70)

− ln
(
1/fBℓ

(paBℓ
)∓ 1

))
W I(plBj

, pkAi
)dVI

=

∫
ln

(
fp,I(pkAi

)fr,I(p
l
Bj

)

fp,I(pkAi
)fr,I(plBj

)

)
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)dVI

=
1

2

∫
ln

(
fp,I(pkAi

)fr,I(p
l
Bj

)

fp,I(pkAi
)fr,I(plBj

)

)(
fr,I(p

l
Bj

)fp,I(pkAi
)

−fp,I(plAj
)fr,I(pkBi

)
)
W I(plBj

, pkAi
)dVI ,

where to obtain the last line we used the time-reversal property (3.67).2441

A pair of forward and backward asymmetric interactions combine to give a term2442

of the form2443 ∑
ℓ

nAb∑
a=1

∫
ln
(
1/fAℓ

(paAℓ
)∓ 1

) (
fr,I(p

l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
) (3.71)

−fp,I(pkAi
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)
)
dVI

+
∑
ℓ̃

nB
ℓ̃∑

c=1

∫
ln
(
1/fBℓ̃

(pcBℓ̃
)∓ 1

)(
fp,I(p

k
Ai
)fr,I(plBj

)W
←−
I (pkAi

, plBj
)

−fr,I(plBj
)fp,I(pkAi

)W I(plBj
, pkAi

)
)
dVI

=

∫ (∑
ℓ

nAℓ∑
a=1

ln
(
1/fAℓ

(paAℓ
)∓ 1

)
−
∑
ℓ̃

nB
ℓ̃∑

c=1

ln
(
1/fBℓ̃

(pcBℓ̃
)∓ 1

) fr,I(p
l
Bj

)fp,I(pkAi
)W I(plBj

, pkAi
)dVI

−
∫ (∑

ℓ

nAℓ∑
a=1

ln
(
1/fAℓ

(paAℓ
)∓ 1

)
−
∑
ℓ̃

nB
ℓ̃∑

c=1

ln
(
1/fBℓ̃

(pcBℓ̃
)∓ 1

) fp,I(p
k
Ai
)fr,I(plBj

)W I(plBj
, pkAi

)dVI

(3.72)
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where to obtain the first equality we used the time-reversal property (3.67). Combin-2444

ing the symmetric and asymmetric cases we find2445

∇µs
µ =

∑
I∈ints

1

2nI

∫
ln

(
fp,I(pkAi

)fr,I(p
l
Bj

)

fp,I(pkAi
)fr,I(plBj

)

)(
fr,I(p

l
Bj

)fp,I(pkAi
) (3.73)

−fp,I(plAj
)fr,I(pkBi

)
)
W I(plBj

, pkAi
)dVI

+
∑
I∈−→int

1

nI

∫
ln

(
fr,I(p

l
Bj

)fp,I(pkAi
)

fp,I(pkAi
)fr,I(plBj

)

)(
fr,I(p

l
Bj

)fp,I(pkAi
)

−fp,I(pkAi
)fr,I(plBj

)
)
W I(plBj

, pkAi
)dVI .

Each term in either sum is the integral of a non-negative quantityW I times a quantity2446

of the form (a− b) ln(a/b), a, b > 0, which is easily seen to be non-negative. Therefore2447

we obtain the claimed result ∇µs
µ ≥ 0. The entropy four current is future directed,2448

due to the volume element being supported on the future mass shell. Therefore, given2449

any splitting of spacetime into space and time M = S × T , Boltzmann’s H-theorem2450

implies that the total entropy is non-decreasing on T .2451

3.3 Neutrinos in the early Universe2452

Instantaneous Freeze-out Model2453

Neutrino freeze-out is, as far as we know, the unique era in the history of the Uni-2454

verse when a significant matter fraction froze out at the same time that a reheating2455

period was beginning due to the onset of the e+e− annihilation process. It is this2456

coincidence involving the last reheating period that makes neutrino freeze-out a rich2457

and complicated period to study as compared to the many other reheating periods in2458

the history of the Universe.2459

We introduce the effective number of neutrinos, N eff
ν . This quantity quantifies the2460

amount of radiation energy density, ρr, in the Universe prior to photon freeze-out and2461

after e± annihilation. N eff
ν is a key cosmological observable that can be measured by2462

fitting to the distribution of CMB temperature fluctuations. The early Planck [62]2463

analysis found N eff
ν = 3.36 ± 0.34 (CMB only) and N eff

ν = 3.62 ± 0.25 (CMB+H0)2464

(68% confidence levels), indicating a possible tension in the current understanding of2465

N eff
ν though this tension has lessened with further analysis from Planck [61,37] This2466

section, as well as in Section 3.4, works towards a detailed understanding of N eff
ν with2467

an eye towards this tension.2468

Mathematically, N eff
ν is defined by the relation2469

ρr =
(
1 + (7/8)R4

νN
eff
ν

)
ργ , (3.74)

where ρr is the radiation component of the Universe energy density, ργ is the photon2470

energy density and Rν ≡ Tν/Tγ = (4/11)1/3 is the photon to neutrino temperature2471

ratio in the limit where the annihilating e± pairs do not transfer any entropy to2472

Standard Model (SM) left-handed neutrinos, i.e., under the assumption that neutrinos2473

have completely frozen out at the time of e± annihilation. The factor 7/8 is the ratio2474

of Fermi to Bose reference normalization in ρ and the neutrino to photon temperature2475

ratio Rν is the result of the transfer of e± entropy into photons after neutrino freeze-2476

out.2477

The definition 3.74 is constructed such that if photons and SM left-handed neu-2478

trinos are the only significant massless particle species in the Universe between the2479
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freeze-out of left-handed neutrinos at Tγ = O(1) MeV and photon freeze-out at2480

Tγ = 0.25 eV, and assuming zero reheating of neutrinos, then N eff
ν = 3, correspond-2481

ing to the number of SM neutrino flavors. Detailed numerical study of the neutrino2482

freeze-out process within the SM gives N eff
ν = 3.046 [50], a value close to the num-2483

ber of flavors, indicating only a small amount of neutrino reheating. We emphasize2484

that N eff
ν is named after neutrinos as they are the only significant contributor in SM2485

cosmology. However, N eff
ν could be impacted by non SM particles.2486

First we study how N eff
ν is impacted by non-SM neutrino dynamics by character-2487

izing its dependence on the neutrino freeze-out temperature within an instantaneous2488

freeze-out model. This model, based on the work in [25,26], allows us study N eff
ν2489

without requiring a detailed description of the underlying non-SM interactions; the2490

latter will be considered later in Section 3.4. In addition, we explore the possibility2491

of non-SM neutrino contributions to N eff
ν ; the latter is based on [20].2492

Chemical and Kinetic Equilibrium2493

As the Universe expands and cools, the various components of the Universe transition2494

from equilibrium to non-interacting. This process is governed by two key tempera-2495

tures: 1) The chemical freeze-out temperature, Tch, above which the particles are kept2496

in chemical equilibrium by number changing interactions. 2) The kinetic freeze-out2497

temperature, above which the particles are kept in thermal equilibrium, i.e., equi-2498

librium momentum distribution. In reality, these are not sharp transitions, but we2499

approximate them as such in this section. The insights gained here will be important2500

when studying the more detailed model of neutrino freeze-out in later sections.2501

At sufficiently high temperatures, such as existed in the early Universe, both par-2502

ticle creation and annihilation (i.e., chemical) processes and momentum exchanging2503

(i.e., kinetic) scattering processes can occur sufficiently rapidly to establish com-2504

plete thermal equilibrium of a given particle species. The distribution function f±ch2505

of fermions (+) and bosons (-) in both chemical and kinetic equilibrium is found by2506

maximizing entropy subject to energy being conserved2507

f±ch =
1

exp(E/T )± 1
, T > Tch , (3.75)

where E is the particle energy, T the temperature, and Tch the chemical freeze-out2508

temperature.2509

As temperature decreases, there will be a period where the temperature is greater2510

than the kinetic freeze-out temperature, Tk, but below chemical freeze-out. During2511

this period, momentum exchanging processes continue to maintain an equilibrium2512

distribution of energy among the available particles, which we call kinetic equilibrium,2513

but particle number changing processes no longer occur rapidly enough to keep the2514

equilibrium particle number yield, i.e., for T < Tch the particle number changing2515

processes have ‘frozen-out’. In this condition the momentum distribution, which is in2516

kinetic equilibrium but chemical nonequilibrium, is obtained by maximizing entropy2517

subject to particle number and energy constraints and thus two parameters appear2518

f±k =
1

Υ−1 exp(E/T )± 1
, Tk < T ≤ Tch . (3.76)

The need to preserve the total particle number within the distribution introduces an2519

additional parameter Υ called fugacity.2520

The fugacity, Υ (t) ≡ eσ(t), controls the occupancy of phase space and is necessary2521

once T (t) < Tch in order to conserve particle number. A fugacity different from 12522
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implies an over-abundance (Υ > 1) or under-abundance (Υ < 1) of particles com-2523

pared to chemical equilibrium and in either of these situations one speaks of chemical2524

nonequilibrium.2525

The effect of σ is similar after that of chemical potential µ, except that σ is2526

equal for particles and antiparticles, and not opposite. This means σ > 0 (Υ > 1)2527

increases the density of both particles and antiparticles, rather than increasing one2528

and decreasing the other as is common when the chemical potential is associated with2529

conserved quantum numbers. Similarly, σ < 0 (Υ < 1) decreases both. The fact that2530

σ is not opposite for particles and antiparticles reflects the fact that both the number2531

of particles and the number of antiparticles are conserved after chemical freeze-out,2532

and not just their difference. Ignoring the small particle antiparticle asymmetry their2533

equality reflects the fact that any process that modifies the distribution would affect2534

both particle and antiparticle distributions in the same fashion. Such an asymmetry2535

would be incorporated by replacing Υ → Υe±µ/T where µ is the chemical potential,2536

but we ignore it in this work as the matter antimatter asymmetry is on the order of2537

1 part in 109.2538

We also emphasize that the fugacity is time dependent and not just an initial con-2539

dition. At high temperatures Υ = 1 and we will find that Υ < 1 emerges dynamically2540

as a result of the freeze-out process. The importance of fugacity was first introduced2541

in [115] in the context of quark-gluon plasma. Its presence in cosmology was noted2542

in [116,117] but its importance has been largely forgotten and the consequences un-2543

explored in the literature.2544

Einstein-Vlasov Equation in FLRW Spacetime2545

Once the temperature drops below the kinetic freeze-out temperature Tk of a partic-2546

ular component of the Universe, we reach the free streaming period where all particle2547

scattering processes have completely frozen out. The dynamics are therefore deter-2548

mined by the free-streaming Boltzmann-Einstein equation, Eq. (3.42) with C[f ] = 0,2549

known as the Einstein-Vlasov equation, in a spatially flat FLRW universe.2550

Due to the assumed homogeneity and isotropy, the particle distribution function2551

depends on t and p0 = E only and so the Einstein-Vlasov equation becomes2552

E∂tf + (m2 − E2)
∂ta

a
∂Ef = 0 . (3.77)

The general solution to Eq. (3.77) can be found in, e.g., [49,118]:2553

f(t, E) = K(x) , x ≡ a(t)2

D2
(E2 −m2) , (3.78)

where K is an arbitrary smooth function and D is an arbitrary constant with units2554

of mass. To continue the evolution beyond thermal freeze-out we choose K to match2555

the kinetic equilibrium distribution Eq. (3.76) at the freeze-out time tk. This is ac-2556

complished by setting2557

K(x) =
1

Υ−1ν e
√

x+m2/T 2
k + 1

(3.79)

and D = Tka(tk).2558

The Fermi-Dirac-Einstein-Vlasov (FDEV) distribution function for neutrinos after2559

freeze-out is then2560

f(t, E) =
1

Υ−1ν e
√

(E2−m2)/T 2
ν+m2

ν/T
2
k + 1

, (3.80)
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where2561

Tν(t) =
Tka(tk)

a(t)
. (3.81)

We will call Tν in Eq. (3.81) the neutrino background temperature, even though the2562

distribution of free streaming particles has a thermal shape only for m = 0 and hence2563

Tν will differ from the temperature of the photon background. The shape seen in2564

Eq. (3.80) describes a gas of neutrinos that is free streaming in an expanding universe2565

following the freeze-out temperature Tν(tk) = Tk.2566

The energy, pressure, number density, and entropy density of the free-streaming2567

distribution can be computed using (3.45), (3.46), and (3.44)2568

ρ =
gν
2π2

∫ ∞
0

(
m2

ν + p2
)1/2

p2dp

Υ−1ν e
√

p2/T 2
ν+m2

ν/T
2
k + 1

, (3.82)

P =
gν
6π2

∫ ∞
0

(
m2

ν + p2
)−1/2

p4dp

Υ−1ν e
√

p2/T 2
ν+m2

ν/T
2
k + 1

, (3.83)

n =
gν
2π2

∫ ∞
0

p2dp

Υ−1ν e
√

p2/T 2
ν+m2

ν/T
2
k + 1

, (3.84)

s = − gν
2π2

∫ ∞
0

H(p2/T 2
ν )p

2dp , H ≡ K lnK + (1−K) ln(1−K) , (3.85)

where gν is the neutrino degeneracy (not to be confused with the metric factor
√
−g =2569

a3).2570

Comparing these results to the corresponding quantities in Minkowski space, we2571

see that they differ by the replacement m → mTν(t)/Tk in the exponential factor2572

only. Changing variables to u = p/Tν , one sees that both n and s are proportional2573

to T 3
ν . The neutrino free-streaming temperature, Tν , is inversely proportional to a,2574

hence we see that2575

a3n = constant and a3s = constant. (3.86)

This proves that the particle number and entropy in a comoving volume are conserved,2576

irrespective of the form of K that defines the shape of the momentum distribution at2577

freeze-out. It should be noted that this conservation of entropy in free-streaming neu-2578

trinos relies on the Boltzmann equation model, and its corresponding entropy current2579

(3.44), an approximation which may break down in later epochs of the evolution of2580

the Universe.2581

Neutrino Fugacity and Photon to Neutrino Temperature Ratio2582

The instantaneous freeze-out assumption allows us to use conservation laws in Eq. (1.54)2583

to characterize the neutrino fugacity and temperature in terms of the freeze-out tem-2584

perature Tk. We first outline the physics of the situation qualitatively. For Tk < T <2585

Tch, the evolution of the temperature of the common e±, γ, ν plasma and the neu-2586

trino fugacity are determined by conservation of comoving neutrino number (since2587

T < Tch) and conservation of entropy. As shown above, after thermal freeze-out the2588

neutrinos begin to free-stream and therefore Υν is constant, the neutrino temperature2589

evolves as 1/a, and the comoving neutrino entropy and neutrino number are exactly2590

conserved.2591

The photon temperature then evolves to conserve the comoving entropy within the2592

coupled system of photons, electrons, and positrons. As annihilation occurs, entropy2593
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from e+e− is fed into photons, leading to reheating. We now make this analysis2594

quantitative in order to derive a relation between the reheating temperature ratio2595

and neutrino fugacity.2596

Assuming Tch ≫ me, the entropy in a given comoving volume, V (tch), is the sum2597

of relativistic neutrinos (with Υν = 1), electrons, positrons, and photons2598

S(Tch) =

(
7

8
gν +

7

8
ge± + gγ

)
2π2

45
T 3
chV (tch) , (3.87)

where T1 is the common neutrino, e+e−, and γ temperature.2599

The number of neutrinos and anti-neutrinos in this same volume is2600

Nν(Tch) =
3gν
4π2

ζ(3)T 3
1 V (tch) . (3.88)

The particle-antiparticle, flavor, and spin-helicity statistical factors are gν = 6, ge± =2601

4, gγ = 2.2602

Distinct chemical and thermal freeze-out temperatures lead to a nonequilibrium2603

modification of the neutrino distribution in the form of a fugacity factor Υν when2604

Tk < T < Tch. This leads to the following expressions for neutrino entropy and2605

number at T = Tk in the comoving volume2606

S(Tk) =

(
2π2

45
gγT

3
k + Se±(Tk) + Sν(Tk)

)
V (tk) , (3.89)

Nν(Tk) =
gν
2π2

∫ ∞
0

u2du

Υ−1ν (Tk)eu + 1
T 3
kV (tk) .

After neutrino freeze-out and when Tγ ≪ me, the entropy in neutrinos is con-2607

served independently of the other particle species and the e+e− entropy is nearly all2608

transferred to photons:2609

Sγ(Tγ) =
2π2

45
gγT

3
γV (t). (3.90)

Note that we must now distinguish between the neutrino and photon temperatures.2610

The conservation laws Eq. (1.54) and Eq. (3.86) then imply the following relations.2611

1. Conservation of comoving neutrino number between chemical and kinetic freeze-2612

out:2613

T 3
chV (tch)

T 3
kV (tk)

=
2

3ζ(3)

∫ ∞
0

u2du

Υ−1ν (Tk)eu + 1
. (3.91)

2. Conservation of the entropy in e±, γ, and neutrinos prior to neutrino freeze-out:2614 (
7

8
gν +

7

8
ge± + gγ

)
2π2

45
T 3
chV (tch) = (3.92)(

Sν(Tk) + Se±(Tk) +
2π2

45
gγT

3
k

)
V (tk) .

3. Conservation of the entropy in e± and γ between neutrino freeze-out and e±2615

annihilation:2616

2π2

45
gγT

3
γV (t) =

(
2π2

45
gγT

3
k + Se±(Tk)

)
V (tk) , Tγ ≪ min{me, Tk} . (3.93)
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These relations allow one to solve for the fugacity, reheating ratio, and effective2617

number of neutrinos in terms of the kinetic freeze-out temperature, irrespective of the2618

details of the dynamics that leads to a particular freeze-out temperature. Specifically,2619

combining Eq. (3.91) and Eq. (3.92) one obtains2620

Sν(Tk)/T
3
k + Se±(Tk)/T

3
k + 2π2

45 gγ(
7
8gν + 7

8ge± + gγ
)

2π2

45

=
2

3ζ(3)

∫ ∞
0

u2du

Υ−1ν (Tk)eu + 1
. (3.94)

This can be solved numerically to compute Υν(Tk). One can also use these relations2621

to analytically derive the following expansion for the photon to neutrino temperature2622

ratio after e± annihilation (see [26]):2623

Tγ
Tν

= aΥ b
(
1 + cσ2 +O(σ3)

)
, (3.95)

a =

(
1 +

7

8

ge±

gγ

)1/3

=

(
11

4

)1/3

, b ≈ 0.367 , c ≈ −0.0209 .

An approximate power law fit was first obtained numerically in [25]. A relation2624

between the fugacity Υ = eσ and the effective number of neutrinos (3.74) was also2625

derived in [26] using these methods:2626

N eff
ν =

360

7π4

e−4bσ

(1 + cσ2)4

∫ ∞
0

u3

eu−σ + 1
du
(
1 +O(σ3)

)
. (3.96)

In Fig. 24 we plot that dependence of N eff
ν and Υ on Tk that is implied by these2627

calculations. In particular, the fugacity evolves following the solid black curve in the2628

bottom plot until it reaches the kinetic freeze-out temperature, at which point the2629

neutrinos decouple and Υ remains constant thereafter, as shown in the dashed black2630

curves for two sample values of Tk.2631

Planck CMB results [62] contain several fits based on different data sets which2632

suggest that N eff
ν is in the range 3.30± 0.27 to 3.62± 0.25 (68% confidence level). We2633

note more recent Planck CMB analysis can be found in [37]. A numerical computation2634

based on the Boltzmann equation with two body scattering [50] gives to N eff
ν = 3.046.2635

These values are shown in the vertical lines in the left figure. The tension between2636

the Planck results and theoretical reheating studies motivates our work.2637

Contribution to effective neutrino number from sub-eV mass sterile Particles2638

Moving beyond neutrinos, we now study the effect on N eff
ν of non-SM light weakly2639

coupled particle species, referred to here as a sterile particles (SP). Such hypothetical2640

SPs would behave as ‘dark radiation’ [119] rather than cold dark matter and would2641

therefore impact N eff
ν in a similar manner to neutrinos, though potentially with a2642

vastly different freeze-out temperature. This section is adapted from the work in [20].2643

The possibility that Goldstone bosons, one candidate for SPs, could be mistaken2644

for a fractional contribution to cosmic neutrinos was identified in [120]. Another2645

viable candidate for SPs are sterile neutrinos. It has been shown that three ‘new’2646

right-handed neutrinos could fully account for the observed tension in the effective2647

number of neutrinos,N eff
ν , if their freeze-out temperature is in the vicinity of the quark2648

gluon plasma (QGP) phase transition [121,122]. If SPs originating in the QGP phase2649

transition are interpreted as Goldstone bosons it would imply that in the deconfined2650

phase there is an additional hidden symmetry, weakly broken at hadronization. For2651

example, if this symmetry were to be part of the baryon conservation riddle, then we2652
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parameter through the freeze-out period (bottom)
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can expect that these Goldstone bosons will couple to particles with baryon number,2653

and possibly only in the domain where the vacuum is modified from its present2654

day condition. These considerations motivate study of the contribution to N eff
ν of2655

boson or fermion degrees of freedom (DoF) that froze out near to the QGP phase2656

transformation.2657

In this study we use the lattice-QCD derived QGP EoS from [69] to characterize2658

the relation between N eff
ν and the number of DoF that froze out at the time that2659

the quark-gluon deconfined phase froze into hadrons near T = 150MeV. We work2660

within the instantaneous freeze-out approximation, using the same reasoning that2661

was applied to neutrinos, i.e., we employ comoving entropy conservation along with2662

the facts that frozen-out particle species undergo temperature scaling with 1/a(t) and2663

the remaining coupled particles undergo reheating at each T ≃ m threshold, caused2664

by a disappearing particle species transfer entropy into the remaining particles.2665

We denote by S the conserved ‘comoving’ entropy in a volume element dV , which2666

scales with the factor a(t)3. As we are no longer only considering just the neutrino2667

freeze-out, here we employ the definition of the effective number of entropy DoF, gS∗ ,2668

given by2669

S =
2π2

45
gS∗ T

3
γ a

3 . (3.97)

For ideal fermion and boson gases2670

gS∗ =
∑

i=bosons

gi

(
Ti
Tγ

)3

f−i +
7

8

∑
i=fermions

gi

(
Ti
Tγ

)3

f+i . (3.98)

The gi are degeneracies, f±i are known functions, valued in (0, 1), that turn off the2671

various species as the temperature drops below their mass; compare to the analogous2672

Eqs. (2.3) and (2.4) in [67].2673

Such a simple characterization does not hold in the vicinity of the QGP phase2674

transformation where quark-hadron degrees of freedom are strongly coupled and the2675

system must be studied using lattice QCD. A computation of gS∗ that incorporates the2676

lattice QCD results is shown in the solid line in Figure 25 (left axis). Specifically, we2677

used the table of entropy density values through the QGP phase transition presented2678

by Borsanyi et al. [69], while circles show recent results from Bazavov et al. [123].2679

This should be compared to the use of the ideal gas approximation from [125] together2680

with the fit in [126] to interpolate though the QGP phase transition and older (year2681

2009) lattice data from [124] (triangles). The free gas approximation has a maximum2682

error of 10% in the QGP phase transition temperature range T ≃ 150MeV. The 20092683

lattice data used in [121] has a maximum error on the order of 25% which leads to a2684

non-negligible difference in the relation between freeze-out temperature and N eff
ν .2685

Independent of their source, once the SPs decouple from the particle inventory at2686

a photon temperature of Td,s, a difference in their temperature from that of photons2687

will build up during subsequent photon reheating periods, similarly to earlier compu-2688

tations. Conservation of entropy leads to a temperature ratio at Tγ < Td,s, shown in2689

the dot-dashed line in Figure 25 (right axis), given by2690

Rs ≡ Ts/Tγ =

(
gS∗ (Tγ)

gS∗ (Td,s)

)1/3

. (3.99)

Evolving the Universe through neutrino freeze-out, if Ts and Tγ are the light SP and2691

photon temperatures, both after e± annihilation, and gs is the number of DoF of the2692

SPs normalized to bosons (i.e., for fermions it includes an additional factor of 7/8)2693
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Fig. 25. Left axis: Effective number of entropy-DoF, including lattice QCD effects apply-
ing [69] (solid line) and [123] (circles), compared to the earlier results [124] (triangles) used
by [121], and the ideal gas model of [125] (dashed line) as function of temperature T . Right
axis: Photon to SP temperature ratio, Tγ/Ts, as a function of SP decoupling temperature
(dash-dotted (blue) line). The vertical dotted lines at T = 142 and 163 MeV delimit the
QGP transformation region. Published in Ref. [20] under the CC BY 4.0 license

then this leads to the following change in the effective number of neutrinos in excess2694

of the SM value:2695

δNeff ≡ N eff
ν − 3.046 =

4gs
7

(
Ts
RsTγ

)4

, (3.100)

where 3.046 is the SM neutrino contribution. Using Eq. (3.99) we can rewrite δNeff as2696

δNeff =
4gs
7R4

ν

(
gS∗ (Tγ)

gS∗ (Td,s)

)4/3

, (3.101)

where Td,s is the decoupling temperature of the SP and Tγ is any photon temperature2697

in the regime Tγ ≪ me. The SM particles remaining (in relevant amounts) at such Tγ2698

are photons and SM neutrinos, the latter with temperature RνTγ , and so gS∗ (Tγ) =2699

2 + 7/8× 6× 4/11 and (see also Eq.(2.7) in [67])2700

δNeff ≈gs
(

7.06

gS∗ (Td,s)

)4/3

. (3.102)

In Figure 26 we plot δNeff as a function of Td,s for 1, . . . , 6 boson (solid lines)2701

and fermion (dashed lines) DoF. For a low decoupling temperature Td,s < 100MeV2702

a single bose or fermi SP can help alleviate the observed tension in N eff
ν . Within2703

the QGP hadronization temperature range Tc = 142− 163MeV (marked by vertical2704

dotted lines) we see that three boson degrees of freedom or four fermion degrees2705

https://creativecommons.org/licenses/by/4.0/
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in Ref. [20] under the CC BY 4.0 license

of freedom are the most likely cases to resolve the tension. If the SPs froze out2706

in the QGP phase at Td,s ≫ 163MeV then a significantly larger number of SPs2707

would be required. While such a scenario cannot be excluded, such a large number2708

undiscovered weakly broken symmetries, or/and sterile neutrino-like particles, seems2709

unlikely. Therefore we suggest that Figure 26 pinpoints the QGP temperature range2710

and below as the primary domain of interest for the freeze-out of a small to moderate2711

number of hypothetical degrees of freedom, should these be responsible the excess in2712

N eff
ν above the SM value.2713

3.4 Study of Neutrino Freeze-out using the Boltzmann-Einstein Equation2714

In this section we remove the instantaneous freeze-out assumption and present results2715

of a more precise study of neutrino freeze-out: We do not assume that the distribution2716

is either in chemical or kinetic equilibrium or is free-streaming. The required mathe-2717

matical theory and numerical method is developed in Appendices A, B, and C. Here2718

we focus our attention on the physical implications, in particular the dependence of2719

the freeze-out process on natural constants. This allows us identify potential avenues2720

by which the tension between observed in terms of present day value of Hubble pa-2721

rameter H0 and the related theoretical value of N eff
ν , the key feature of the invisible2722

today neutrino background, may be alleviated.2723

https://creativecommons.org/licenses/by/4.0/
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Our study also constrains the time and/or temperature variation of certain natural2724

constants by comparing the results with measurements of N eff
ν . Further details on this2725

work were presented in Sec. 3.3, more details can be found in Ref. [19]. The topic of2726

the time variation of natural constants is a very active field with a long history; for2727

a comprehensive review of this area, with which we make only slight contact, see e.g.2728

Ref. [127].2729

Neutrino Freeze-Out Temperature and Relaxation Time2730

To connect with the instantaneous freeze-out model from Fig. 3.3, we now give a2731

definition of the kinetic freeze-out temperature that is applicable to the Boltzmann-2732

Einstein equation model and use this to calculate the neutrino freeze-out temperature.2733

Any such definition will be only approximate, as the freeze-out process is not a sharp2734

transition. Our definition is motivated in part the treatment in [53].2735

We first define a characteristic length between scatterings. Using the formula2736

Eq. (B.18), we obtain the fractional rate of change of comoving particle number2737

d
dt (a

3n)

a3n
=

gν
2π2n

∫
C[f ]p2/Edp . (3.103)

Here we don’t want the net change, but rather to count the number of interactions.2738

For that reason, we imagine that only one direction of the process is operational and2739

define the relaxation rate2740

Γ ≡ gν
2π2n

T 2

∫
C̃[f ]zdz , (3.104)

where the one way collision is C̃[f ] is computed as in Eq. (B.15) except with F replaced2741

by2742

F̃ = f1(p1)f2(p2)f
3(p3)f

4(p4) . (3.105)

If particle type 1 also participates in the reverse of the reaction 1 + 2 → 3 + 4 then2743

a corresponding term for the reverse reaction must also be added. The key difference2744

is there is no minus sign; here we are counting reactions, not net particle number2745

change.2746

Using the average velocity, which for (effectively massless) neutrinos is v̄ = c = 1,2747

we obtain what we call the scattering length2748

LΓ ≡
v̄

Γ
=

∫∞
0

1
Υ−1ez+1z

2dz∫∞
0
C̃[f ]z2/Edz

. (3.106)

This can be compared to the Hubble length LH = c/H and the temperature at2749

which LΓ = LH we call the freeze-out temperature for that reaction. Figure 27 shows2750

the scattering length and LH for various types of neutrino reactions. The solid line2751

corresponds to the annihilation process e+e− → νν̄, the dashed line corresponds to2752

the scattering νe± → νe±, and the dot-dashed line corresponds to the combination of2753

all processes involving only neutrinos. The freeze-out temperatures in MeV are given2754

in Table 6.2755

We now consider the the relaxation time for a given reaction, defined by τ = 1/Γ .2756

Suppose we have a time interval tf > ti and corresponding temperature interval2757

Tf < Ti during which there is no reheating and the Universe is radiation dominated.2758

Normalizing time so t = 0 corresponds to the temperature Ti we have2759

ȧ/a = −Ṫ /T , H =
C

2Ct+ T 2
i

∝ T 2 (3.107)
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e+e− → νν̄ νe± → νe± ν-only processes
νe 2.29 1.15 0.910
νµ,τ 3.83 1.78 0.903

Table 6. Freeze-out temperatures in MeV for electron neutrinos and for µ,τ neutrinos.

where C is a constant that depends on the energy density and the Planck mass. Its2760

precise form will not be significant for us. Note that Eq. (3.107) implies2761

1/H(t)− 1/H(0) = 2t . (3.108)

At T ≫ me, the rates for reactions under consideration from Tables 8 and 9 scale2762

as Γ ∝ T 5. Therefore, supposing H(Tf )/Γ (Tf ) = 1 (which occurs at Tf = O(1MeV)2763

as seen in the above figures), at any time tf > t > ti we find2764

τ(t)/t =
2

Γ (t)

(
1

H(t)
− 1

H(0)

)−1
=

2T 5
f

Γ (Tf )T 5

(
T 2
f

H(Tf )T 2
−

T 2
f

H(Tf )T 2
i

)−1
(3.109)

=
2T 3

f

T 3

(
1− T 2

T 2
i

)−1
. (3.110)

Therefore, given any time ti < t0 < tf we have2765

τ(t) < τ(t0) =
2T 3

f

T 3
0

(
1− T 2

0

T 2
i

)−1
∆t for all t < t0 , (3.111)

where ∆t = t0 − ti = t0.2766

The first reheating period that precedes neutrino freeze-out is the disappearance2767

of muons and pions around O(100MeV), as seen in Figure 1.1, and so we let Ti =2768

100MeV. Eq. (3.111) is minimized at T0 ≈ 77.5MeV at which point we have2769

τ(t) < 10−5∆t0 for t < t0. (3.112)

This shows that the relaxation time during the period between 100MeV and 77.5MeV2770

is at least five orders of magnitude smaller than the corresponding time interval.2771

Therefore the system has sufficient time to relax back to equilibrium after any poten-2772

tial nonequilibrium aspects developed during the reheating period. Thus justifies our2773

assumption that the neutrino distribution has the equilibrium Fermi Dirac form at2774

T = O(10MeV) when we begin our numerical simulation. This can also be demon-2775

strated numerically in Figure 28, where we have initialized the system at Tγ = 12MeV2776

with a nonequilibrium distribution of µ and τ neutrinos, giving them Υ = 0.9, and let2777

them evolve under the Boltzmann-Einstein equation. We see that after approximately2778

10−3 seconds the system relaxes back to equilibrium, well before neutrino freeze-out2779

near t = 1s.2780

Dependence of effective neutrino number on PP-SM parameters2781

Only two key PP-SM parameters influence the effective number of neutrinos, this2782

is the Weinberg angle and the generalized interaction strength η. We explore in the2783

following how N eff
ν depends on these parameters.2784

The Weinberg angle is one of the key standard model parameters that impacts2785

the neutrino freeze-out process. More specifically, it is found in the matrix elements2786
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of weak force processes, including the reactions e+e− → νν̄ and νe± → νe± as found2787

in Tables 8 and 9. It is determined by the SU(2)× U(1) coupling constants g, g
′
by2788

sin(θW ) =
g

′√
g2 + (g′)2

. (3.113)

It is also related to the mass of theW and Z bosons and the Higgs vacuum expectation2789

value v by2790

MZ =
1

2

√
g2 + (g′)2v , MW =

1

2
gv , cos(θW ) =

MW

MZ
, (3.114)

as well as the electromagnetic coupling strength2791

e = 2MW sin(θW )/v =
gg

′√
g2 + (g′)2

. (3.115)

It has a measured value in vacuum θW ≈ 30◦, giving sin(θW ) ≈ 1/2, but its value is2792

not fixed within the Standard Model. For this reason, a time or temperature variation2793

can be envisioned and this would have an observable impact on the neutrino freeze-out2794

process, as measured by N eff
ν .2795

In letting sin(θW ), and hence g and g
′
, vary we must fix the electromagnetic2796

coupling e so as not to impact sensitive cosmological observables such as Big-Bang2797

Nucleosynthesis.2798

Fixing v, the smallest MW can become is when sin(θW ) = 1, yielding a reduction2799

in MW by a factor of 2. This implies that MZ > MW ≫ |p| for neutrino momentum2800

p in the energy range of neutrino freeze-out, around 1MeV, even as we vary sin(θW ).2801

This approximation is inherent in the formulas for the matrix elements in Tables 82802

and 9 and continues to be valid here. We will characterize the dependence of N eff
ν on2803

sin(θW ) in following, but first we identify the remaining parameter dependence in the2804

Boltzmann-Einstein system2805

Beyond the Weinberg angle, the remaining dependence of the Boltzmann-Einstein2806

system on dimensioned quantities during neutrino freeze-out can be combined into2807

one overall interaction strength factor. To show this, we now convert the system to2808

dimensionless form. Letting me be the mass scale and Mp/m
2
e be the time scale the2809

Einstein equations take the form2810

H2 =
ρ

3
, ρ̇ = −3H(ρ+ P ) . (3.116)

Since e± are the only (effectively) massive particles in the system, by scaling all2811

energies, momenta, energy densities, pressures, and temperatures by me we have2812

removed all scale dependent parameters from the Einstein equations. The Boltzmann-2813

Einstein equation becomes2814

∂tf − pH∂pf = η
C[f ]

E
, η ≡Mpm

3
eG

2
F , (3.117)

where we have also factored out of C[f ] the G2
F term that is common to all of the2815

neutrino interaction matrix elements.2816

Aside from the θW dependence of the matrix elements seen in Tables 8 and 9, the2817

complete dependence on natural constants is now contained in a single dimensionless2818

neutrino interaction strength parameter η with the vacuum present day value2819

η0 ≡ Mpm
3
eG

2
F

∣∣
0
≈ 0.04421 . (3.118)
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Impact of QED Corrections to Equation of State2820

At the time of neutrino freeze-out, the universe is at sufficiently high temperature for2821

photons and e± to be in chemical and kinetic equilibrium. The temperature is also2822

sufficiently high for QED corrections to the photon and e± equation of state to be2823

non-negligible. Therefore, in our study here we use the results given in [128,129] to2824

include these in our computation by modifying the combined photon, e± equation of2825

state2826

P = P 0 + P int, ρ = −P + T
dP

dT
, (3.119)

where2827

P int =− 1

2π2

∫ ∞
0

[
k2

Ek

δm2
e

eEk/T + 1
+
k

2

δm2
γ

ek/T − 1

]
dk , Ek =

√
k2 +m2

e , (3.120)

δm2
e =

2πα2

3
+

4α

π

∫ ∞
0

k2

Ek

1

eEk/T + 1
dk , δm2

γ =
8α

π

∫ ∞
0

k2

Ek

1

eEk/T + 1
dk , (3.121)

and P 0 is the pressure of a non-interacting gas of photons and e± in chemical equi-2828

librium.2829

Freeze-out T and effective neutrino number dependence on PP-SM2830

We now present the dependence of the effective number of neutrinos, N eff
ν , on the2831

SM parameters sin2(θW ) and η, as computed using the Boltzmann-Einstein equation2832

method developed in Appendices A, B, and C. These results are shown in Figure 29,2833

presented as a function of Weinberg angle sin2(θW ) for η/η0 = 1, 2, 5, 10. The effects2834

of an increase in both parameters above the vacuum values can generate a significant2835

increase in N eff
ν → 3.5.2836

We performed a least squares fit of N eff
ν over the range 0 ≤ sin2(θW ) ≤ 1, 1 ≤2837

η/η0 ≤ 10 shown in figure 29, obtaining a result with relative error less than 0.2%,2838

N eff
ν =3.003− 0.095 sin2(θW ) + 0.222 sin4(θW )− 0.164 sin6(θW )

+

√
η

η0

(
0.043 + 0.011 sin2(θW ) + 0.103 sin4(θW )

)
. (3.122)

N eff
ν is monotonically increasing in η/η0 with dominant behavior scaling as

√
η/η0.2839

Monotonicity is to be expected, as increasing η decreases the freeze-out temperature2840

and the longer neutrinos are able to remain coupled to e±, the more energy and2841

entropy from annihilation is transferred to neutrinos.2842

We complement this with fits to the photon to neutrino temperature ratios Tγ/Tνe ,2843

Tγ/Tνµ
= Tγ/Tντ

, and the neutrino fugacities, Υνe
, Υνµ

= Υντ
, again with relative2844

error less than 0.2%,2845

Tγ
Tνµ

=1.401 + 0.015x− 0.040x2 + 0.029x3 − 0.0065y + 0.0040xy − 0.017x2y ,

Υνe
=1.001 + 0.011x− 0.024x2 + 0.013x3 − 0.005y − 0.016xy + 0.0006x2y ,

Tγ
Tνe

=1.401 + 0.015x− 0.034x2 + 0.021x3 − 0.0066y − 0.015xy − 0.0045x2y ,

Υνµ =1.001 + 0.011x− 0.032x2 + 0.023x3 − 0.0052y + 0.0057xy − 0.014x2y ,
(3.123)
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where2846

x ≡ sin2(θW ) , y ≡
√

η

η0
. (3.124)

The bounds on N eff
ν from the Planck analysis [62] can be used to constrain time2847

or temperature variation of sin2(θW ) and η. In Figure 30 the blue region shows the2848

combined range of variation of natural constants compatible with CMB+BAO and2849

the green region shows the extension in the range of variation of natural constants2850

for CMB+H0, both at a 68% confidence level. The dot-dashed line within the blue2851

region delimits this latter domain. The dotted line shows the limit of a 5% change in2852

N eff
ν . Any increase in η/η0 and/or sin2(θW ) moves the value of N eff

ν into the domain2853

favored by current experimental results.2854

We have omitted here a discussion of flavor neutrino oscillations. If it weren’t for2855

the differences between the matrix elements for the interactions between e± and νe2856

on one hand and e± and νµ, ντ on the other, oscillations would have no effect on the2857

flow of entropy into neutrinos and hence no effect on N eff
ν , but these differences do2858

lead to a modification of N eff
ν . In [50] the impact of oscillations on neutrino freeze-out2859

for the present day measured values of θW and η was investigated. It was found that2860

while oscillations redistributed energy amongst the neutrino flavors, the impact on2861

N eff
ν was negligible. We have neglected oscillations in our study.2862

Primordial Variation of Natural Constants2863

We end our study of neutrino freeze-out by exploring what neutrino decoupling in2864

the early Universe can tell us about the values of natural constants when the Uni-2865

verse was about one second old and at an ambient temperature near to 1 MeV (11.62866

billion degrees K). Our results were presented assuming that the Universe contains2867
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no other effectively massless particles but the three left handed neutrinos and three2868

corresponding right handed anti-neutrinos.2869

In Fig. 29 we see that, near the present day value of the Weinberg angle sin2(θW ) ≃2870

0.23, the effect of changing sin2(θW ) on the decoupling of neutrinos is relatively small.2871

The dominant variance is due to the change in the coupling strength η/η0, Eq. (3.117)2872

and Eq. (3.118). The dotted line in Figure 30 shows that in order to achieve a change2873

in N eff
ν at the level of up to 5%, i.e., N eff

ν ≲ 3.2, η/η0 must change significantly, e.g.,2874

increasing by an order of magnitude.2875

It is not possible to exclude with certainty such a large scale in the primordial2876

Universe as we will now argue considering the natural constants contributing to η2877

and their required modification:2878

– In models of emergent gravity we can imagine a ‘melting’ of gravity in the hot2879

primordial Universe, just like we see the vacuum structure and quark confinement2880

melt. Conversely, and perhaps more attractive in light of the present day interest2881

in the so called Hubble tension, there could be present-era weakening of gravity2882

which would allow the Universe expansion to accelerate and more generally could2883

also modify the dark energy input into Universe dynamics. Whether such a variable2884

gravity model can be realized will be a topic for future consideration. Considering2885

that η ∝ Mp ∝ G
−1/2
N the value of η will change in the opposite to the strength2886

of gravity: An order magnitude change in η at the time of neutrino decoupling2887

translates into two orders of magnitude (inverse) change in the strength of gravity.2888

One would not think this is a possible scenario mainly because neutrino decoupling2889
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occurs at a scale so much different from gravity. The question about temporal2890

variation of gravity strength, along with temperature dependence cannot be as2891

yet addressed in absence of fundamental gravity theory.2892

– Compared to all other elementary particles the electron mass has an unusually low2893

value. This could imply a more complicated mass origin of the electron when com-2894

pared to other elementary particles which are drawing their mass by the minimal2895

coupling from the Higgs field . We studied a strong field mechanism for electron2896

mass melting recently [130]. Since η ∝ m3
e, electron mass would need to change2897

at the time of decoupling of neutrinos by ‘only’ a factor 2.15 to create an order of2898

magnitude impact on η. This seems not entirely impossible.2899

– A modification by ‘only’ a factor of 1.8 in the vacuum expectation value (VEV) of2900

the Higgs field v0 ≃ 246 GeV controlling the weak interaction coupling GF ∝ 1/v42901

would suffice to alter η by an order of magnitude. However, if we allow electron2902

mass to be also Higgs controlled, three powers of v would cancel and a change in2903

v by an order of magnitude near to T ≃ me would be required. In either case,2904

given our good understanding of the standard model of particle physics we do2905

not believe that the VEV of the Higgs field could be impacted by the conditions2906

prevailing at the time of neutrino decoupling.2907

To summarize: Gravity, even though it is an effective theory poorly understood at a2908

fundamental level, is governed by the Planck mass scale which is many, many orders2909

of magnitude above scales we are exploring in the epoch of neutrino decoupling.2910

Similarly, the Higgs VEV which controls GF seems also immutable at the neutrino2911

decoupling temperature, considering the relevant scale being different by a factor of2912

about 500,000. On the other hand, electron mass me is ‘anomalously’ small, it is the2913

only elementary scale below the temperature scale of neutrino decoupling, hence it is2914

prone to be modifiable in primordial hot Universe. One can wonder if its small mass is2915

due to an interplay between quantum effects, Higgs coupling and QED interaction. If2916

so the mass would be modifiable at a temperature that is larger than the mass value2917

which is the condition for neutrino decoupling. This therefore could be the cause of2918

a substantial primordial increase in η, impacting the present day Universe expansion2919

speed through the value of N eff
ν .2920

One could further argue that any value of sin2(θW ) is possible at time of neutrino2921

decoupling, as there is no rational for the vacuum observed symmetry breaking mixing2922

value of sin2(θW ). However, in the SU(5) model unifying quarks and leptons a natural2923

value sin2(θW ) = 1/4 appears. Since this model has been discredited by baryon2924

stability, we could still admit any temperature and/or time dependence of sin2(θW ).2925

Even so the appearance of a natural sin2(θW ) = 1/4 value in the framework of one2926

model could imply that a more realistic model will lead to a similar value.2927

3.5 Lepton number and effective number of neutrinos2928

Invisible lepton number: relic neutrinos2929

Neutrinos decoupled from the cosmic plasma in the early Universe at a temperature2930

of T = O(2MeV) and became free-streaming. However, after freeze-out neutrinos still2931

continue to play a significant role in the evolution of the Universe and have a impact2932

on cosmological observations such as Big-Bang Nucleosynthesis (BBN), the Cosmic2933

Microwave Background (CMB), and the matter spectrum for large scale structure.2934

This is due to the sensitivity of the Hubble parameter to the total energy density in the2935

Universe. Besides photons, neutrinos are the most abundant species and contribute2936

significantly to the relativistic energy density throughout the early Universe, affecting2937

the Hubble expansion rate significantly.2938
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The contribution of energy density from the neutrino sector can be described2939

by the effective number of neutrinos N eff
ν , which captures the number of relativistic2940

degrees of freedom for neutrinos as well as any reheating that occurred in the sector2941

after freeze-out. The effective number of neutrino is defined as2942

N eff
ν ≡

ρtotν

7π2

120

(
4
11

)4/3
T 4
γ

, (3.125)

where ρtotν is the total energy density in neutrinos and Tγ is the photon temperature.2943

N eff
ν is defined such that three neutrino flavors with zero participation of neutrinos2944

in reheating during e+e− annihilation results in N eff
ν = 3. The factor of (4/11)

1/3
2945

relates the photon temperature to the free-streaming neutrinos temperature, under2946

the assumption of zero neutrino reheating after e+e− annihilation. The currently2947

accepted theoretical value is N eff
ν = 3.046, after including the slight effect of neutrino2948

reheating [50,19]. The favored value of N eff
ν can be found by fitting to CMB data.2949

In 2013 the Planck collaboration found N eff
ν = 3.36 ± 0.34 (CMB only) and N eff

ν =2950

3.62± 0.25 (CMB and H0) [62].2951

To explain the experimental value of N eff
ν , many studies aim to improve the cal-2952

culation of neutrino decoupling in the early Universe, including exploring the depen-2953

dence of freeze-out on natural constants [19], the entropy transfer from e+e− an-2954

nihilation and finite temperature correction [131,128,132], neutrino decoupling with2955

flavor oscillations [129,50], and investigating nonstandard neutrino interactions [133,2956

134,135,136,137,138,137].2957

The standard cosmological model assumes that the lepton asymmetry L ≡ [NL −2958

NL]/Nγ (normalized with the photon number) between leptons and anti-leptons is2959

small, similar to the B = [NB−NB]/Nγ ; most often it is assumed L = B. Barenboim,2960

Kinney, and Park [139,140] noted that the lepton asymmetry of the Universe is one of2961

the most weakly constrained parameters is cosmology and they propose that models2962

with leptogenesis are able to accommodate a large lepton number asymmetry surviv-2963

ing up to today. Moreover, the discrepancy between HCMB and H0 has increased [141,2964

142,37]. The Hubble tension and the possibility that leptogenesis in the early Uni-2965

verse resulted in neutrino asymmetry motivate our study of the dependence of N eff
ν2966

on lepton asymmetry, L. In our work [15] we consider L ≃ 1 and explore how this2967

large cosmological lepton yield relates to the effective number of (Dirac) neutrinos2968

N eff
ν .2969

Relation between the effective number of neutrinos and chemical potential2970

We consider how neutrinos decouple [21] at a temperature of Tf ≃ 2MeV and are2971

subsequently free-streaming. Assuming exact thermal equilibrium at the time of de-2972

coupling, the neutrino distribution can be written as (see [26] and references therein)2973

fν =
1

exp

(√
E2−m2

ν

T 2
ν

+
m2

ν

T 2
f
− σ µν

Tf

)
+ 1

, Tν ≡
a(tf )

a(t)
Tf , (3.126)

where σ = +1(−1) denotes particles (antiparticles) and we define the effective neu-2974

trino temperature Tν by the red-shifting of momentum in the comoving volume ele-2975

ment of the Universe.2976

Since the freeze-out temperature Tf ≫ mν and also neutrino temperature Tν ≫2977

mν in the domain of our analysis, we consider the massless limit in Eq. (3.126). Under2978
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this approximation, the total neutrino energy density can be written as2979

ρtotν =
gν T

4
ν

2π2

[
7π4

60
+
π2

2

(
µν

Tf

)2
+

1

4

(
µν

Tf

)4]
. (3.127)

Substituting Eq. (3.127) into the definition of the effective number of neutrinos Eq. (3.125),2980

we obtain2981

N eff
ν =3

(
11

4

)4
3
(
Tν
Tγ

)4[
1+

30

7π2

(
µν

Tf

)2
+

15

7π4

(
µν

Tf

)4]
. (3.128)

From Eq. (3.128) we have for the standard photon reheating ratio Tν/Tγ = (4/11)1/32982

[53] and degeneracy gν = 3 (flavor), the relation between the effective number of2983

neutrinos and the chemical potential at freeze-out2984

N eff
ν = 3

[
1 +

30

7π2

(
µν

Tf

)2
+

15

7π4

(
µν

Tf

)4]
. (3.129)

To solve the neutrino chemical potential µν/Tf as a function of the effective number2985

of neutrinos, we can neglect the (µν/Tf )
4 term in Eq. (3.129) because mν ≪ Tf and2986

obtain2987

µν

Tf
= ±

√
7π2

30

(
N eff

ν

3
− 1

)
. (3.130)

In Fig. 31 we plot the free-streaming neutrino chemical potential |µν |/Tf as a function2988

of the effective number of neutrinos N eff
ν . For comparison, the solid (blue) line is the2989

exact solution of |µν |/Tf by solving Eq. (3.129) numerically, and the (red) dashed line2990

is the approximate solution Eq. (3.130) by neglecting the (µν/Tf )
4 in calculation. In2991

the parameter range of interest, we show that the term (µν/Tf )
4 only contributes2992

≈ 2% to the calculation and henceforth we neglect it, and use the approximation2993

Eq. (3.130).2994

The SM value of the effective number of neutrinos, N eff
ν = 3, is obtained under2995

the assumption that the neutrino chemical potentials are not essential, i.e., µν ≪ Tf .2996

From Fig. 31, to interpret the literature values N eff
ν = 3.36 ± 0.34 (CMB only) and2997

N eff
ν = 3.62 ± 0.25 (CMB and H0), we require 0.52 ⩽ µν/Tf ⩽ 0.69. These values2998

suggest a possible neutrino-antineutrino asymmetry at freeze-out, i.e. a difference2999

between the number densities of neutrinos and antineutrinos.3000

Dependence of effective number of neutrinos on lepton asymmetry3001

We now obtain the relation between neutrino chemical potential and the lepton-to-3002

baryon ratio. Let us consider the neutrino freeze-out temperature Tf ≃ 2.0MeV; here3003

we treat neutrino freeze-out as occurring instantaneously and prior to e+e− annihi-3004

lation (implying zero neutrino reheating). Comoving lepton (and baryon) number is3005

conserved after the epoch of leptogenesis (baryogenesis, respectively) which precedes3006

the epoch under consideration in this work (T ≲ 2 MeV).3007

The lepton-density asymmetry ℓ at neutrino freeze-out can be written as3008

ℓf ≡
(
ne − ne

)
f
+

∑
i=e,µ,τ

(
nνi − nνi

)
f
, (3.131)
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Fig. 31. The free-streaming neutrino chemical potential |µν |/Tf as a function of the effective
number of neutrinos Neff

ν . The solid (blue) line is the exact solution and the (red) dashed
line is the approximate solution neglecting the (µν/Tf )

4 term; the maximum difference in
the domain shown is about 2%. Adapted from Ref. [5]

where we use the subscript f to indicate that the quantities should be evaluated at3009

the neutrino freeze-out temperature. As a first approximation, here we assume that3010

all neutrinos freeze-out at the same temperature and their chemical potentials are the3011

same; i.e.,3012

µν = µνe = µνµ = µντ . (3.132)

Furthermore, neutrino oscillation implies that neutrino number is freely exchanged3013

between flavors; i.e., νe ⇌ νµ ⇌ ντ , and we can assume that all neutrino flavors share3014

the same population. Under these assumptions, the lepton-density asymmetry can be3015

written as3016

ℓf =
(
ne − ne

)
f
+
(
nν − nν

)
f
, (3.133)

where the three flavors are accounted for by taking the degeneracy gν = 3 in the last3017

term. The difference in yield of neutrinos and antineutrinos can be written as3018

(nν − nν)f =
gν
6π2

T 3
f

[
π2

(
µν

Tf

)
+

(
µν

Tf

)3 ]
. (3.134)

On the other hand, the baryon-density asymmetry b at neutrino freeze-out is given3019

by3020

bf ≡
(
np − np

)
f
+
(
nn − nn

)
f
≈
(
np + nn

)
f
, (3.135)
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where nn and np are negligible in the temperature range we consider here. Taking the3021

ratio ℓf/bf , using charge neutrality, and introducing the entropy density we obtain3022 (
ℓf
bf

)
≈
(
np
nB

)
f

+ (nν − nν)f

(
s

nB

)
f

1

sf
, nB = (np + nn), (3.136)

where we introduce the notation nB for the baryon number density. The proton3023

concentration at neutrino freeze-out is given by3024 (
np
nB

)
f

=
1

1 + (nn/np)f
=

1

1 + exp
[
− (Q+ µν) /Tf

] , (3.137)

with Q = mn −mp = 1.293MeV. We neglect the electron chemical potential in the3025

last step because the e+e− asymmetry is determined by the proton density, and at3026

energies of order a few MeV, the proton density is small, i.e., µe ≪ Tf .3027

However, as we will see, for our study of N eff
ν we will be interested in the case3028

of a large lepton-to-baryon ratio. From Eq. (3.137) it is apparent that this can only3029

be achieved through the second term in Eq. (3.136), with the first term then being3030

negligible, as it is smaller than 1. So we further approximate3031 (
ℓf
bf

)
≈ (nν − nν)f

(
s

nB

)
f

1

sf
. (3.138)

We retained the full expression Eq. (3.137) in our above discussion to show that the3032

presence of a chemical potential µν ≃ 0.2Q could lead to small, perhaps noticeable,3033

effects on pre-BBN proton and neutron abundance. We defer this unrelated discussion3034

to a separate future work. Note that for large |µν |, Eq. (3.138) implies that the signs3035

of µν and ℓf are the same. However, for very small µν the sign of ℓf is determined by3036

the interplay between (anti)electrons and (anti)neutrinos; i.e., there is competition3037

between the two terms in Eq. (3.133 ).3038

In general, the total entropy density at freeze-out can be written3039

sf =
2π2

45
gs∗(Tf )T

3
f , (3.139)

where the gs∗ counts the degree of freedom for relativistic particles [53]. At Tf ≃ 2MeV,3040

the relativistic species in the early Universe are photons, electron/positrons, and 33041

neutrino species. We have3042

gs∗ = gγ +
7

8
ge± +

7

8
gνν̄

(
Tν
Tγ

)3 [
1 +

15

7π2

(
µν

Tf

)2 ]
= 10.75 +

45

4π2

(
µν

Tf

)2
, (3.140)

where the degrees of freedom are given by gγ = 2, ge± = 4, and gνν̄ = 6, and we have3043

Tν = Tγ = Tf at neutrino freeze-out.3044

Finally, since the entropy-per-baryon from neutrino freeze-out up to the present3045

epoch is constant, we can obtain this value by considering the Universe’s entropy3046

content today [27]. For T ≪ 1MeV, the entropy content today is carried by photons3047

and neutrinos, yielding3048 (
s

nB

)
t0

=

∑
i si
nB

=
nγ
nB

(
sγ
nγ

+
sν
nγ

+
sν̄
nγ

)
(3.141)

=

(
1

B

)
t0

[
sγ
nγ

+
4

3Tν

ρtotν

nγ
− µν

Tf

(
nν − nν̄
nγ

)]
t0

, (3.142)
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Fig. 32. The ratio B/|L| between the net baryon number and the net lepton number as a
function of Neff

ν : The solid blue line shows B/|L|. The vertical (red) dotted lines represent
the values 3.36 ⩽ Neff

ν ⩽ 3.62, which correspond to 1.16 × 10−9 ⩽ B/|L| ⩽ 1.51 × 10−9

(horizontal dashed lines). Adapted from Ref. [5]

where t0 denotes the present day values, we have B = nB/nγ = 0.605 × 10−93049

(CMB) [143] from today’s observation. The entropy per particle for a massless boson3050

at zero chemical potential is (s/n)boson ≈ 3.602.3051

Substituting Eq. (3.134) and Eq. (3.139) into Eq. (3.138) yields the lepton-to-3052

baryon ratio3053

L

B
=

45

4π4

π2(µν/Tf ) + (µν/Tf )
3

10.75 + 45(µν/Tf )2/4π2

(
s

nB

)
t0

, (3.143)

in terms of µν/Tf which is given by Eq.(3.130) and the present day entropy-per-3054

baryon ratio. In Fig. 32 we show the ratio between the net baryon number and the3055

net lepton number as a function of the effective number of neutrino species N eff
ν with3056

the parameter B|t0 = 0.605×10−9(CMB). We find that the values N eff
ν = 3.36±0.343057

and N eff
ν = 3.62±0.25 require the ratio between baryon number and lepton number to3058

be 1.16×10−9 ⩽ B/|L| ⩽ 1.51×10−9. These values are close to the baryon-to-photon3059

ratio 0.57× 10−9 ⩽ B ⩽ 0.67× 10−9.3060

The large lepton asymmetry from cosmic neutrino can also affect the neutron3061

lifespan in cosmic plasma which is one of the important parameter controlling BBN3062

element abundances. In general the neutron lifespan dependence on temperature of3063

the cosmic medium. When temperature T = O(MeV), neutron decay occurs in the3064

plasma of electron/positron and neutrino/antineutrino. Electrons and neutrinos in3065

the background plasma can reduce the neutron decay rate by Fermi suppression to3066

the neutron decay rate. Furthermore, the neutrino background can still provide the3067

suppression after electron/positron pair annihilation becomes nearly complete. In3068

this case,the large neutrino chemical potential from lepton asymmetry would play an3069
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important role and needs to be accounted for in the precision study of the neutron3070

lifespan in the cosmic plasma.3071

Extra neutrinos from microscopic primordial processes3072

We are interested to improve the understanding of the role of neutrinos produced by3073

secondary processes just after neutrinos chemical freeze-out. The continued presence3074

of electron-positron rich plasma until T = 20 keV permits the reaction γγ → e−e+ →3075

νν̄ to occur even after neutrinos decouple from the cosmic plasma. This suggests the3076

small amount of extra neutrinos can be produced until temperature T = 20 keV and3077

can modify the free streaming distribution and the effective number of neutrinos. In3078

this section, we examine the possible source of extra neutrino from electron-positron3079

plasma and develop methods for future detailed study.3080

Considering that neutrinos decouple at Tf = 2MeV and become free streaming3081

after freeze-out. The presence of electron-positron plasma environment from 2MeV >3082

T > 0.02MeV can allow the following weak reaction to occur:3083

γ + γ −→ e− + e+ −→ ν + ν̄. (3.144)

Given the thermal reaction rate per volume Rγγ→ee for reaction γγ → ee and Ree→νν3084

for reaction ee→ νν, then the thermal reaction rate per volume for γγ → e−e+ → νν̄3085

can be written as3086

Rγ→e→ν = Rγγ→ee

(
Ree→νν

Rγγ→ee +Ree→νν

)
≈ Ree→νν (3.145)

In Fig. 33 we plot the thermal reaction rate per volume for relevant reactions as3087

a function of temperature 2MeV > T > 0.05MeV. It shows that the dominant3088

reaction for the process γγ → e−e+ → νν̄ is the ee → νν and can be approximated3089

Rγ→e→ν = Ree→νν in the temperature we are interested in.3090

Given the thermal reaction rate, the dynamic equation describing the relic neu-3091

trino abundance after freeze-out can be expressed as:3092

dnν

dt
+ 3Hnν = Ree→νν(Tγ,e±)−Rνν→ee(Tν), (3.146)

where nν is the number density of neutrinos and H is the Hubble parameter. The3093

parameter Tγ,e± is the equilibrium temperature between photons and e± and Tν is3094

the temperature for free-streaming neutrinos:3095

Tν =
a(tf )

a(t)
Tf , (3.147)

where Tf is the neutrino freeze-out temperature. After neutrinos decoupled from the3096

cosmic plasma, we have Tν ̸= Tγ,e± . This is because the conservation of entropy, after3097

freeze-out, the relic neutrino entropy is conserved independently and the entropy from3098

e+e− annihilation flows solely into photons and reheats the photons’ temperature.3099

However, after neutrino freeze-out, extra entropy from electron-positron plasma can3100

still flow into the free-streaming neutrino sector via the reaction γγ → e−e+ → νν̄.3101

To describe this novel situation, kinetic theory for entropy production needs to be3102

adapted, a topic we will address in the future. Here we neglect this extra entropy and3103

consider the standard scenario for first approximation.3104

In Fig. 34 we plot the temperature ratio Tν/Tγ,e± , the rate ratio Rνν→ee/Ree→νν3105

and (Ree→νν − Rνν→ee)/Ree→νν as a function of temperature. It shows that after3106

neutrino freeze-out, the back reaction νν → ee becomes smaller compared to the3107
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Fig. 33. The thermal reaction rate per volume as a function of temperature 2MeV > T >
0.05MeV. The dominant reaction for the process γγ → e−e+ → νν̄ is the ee → νν and we
have Rγ→e→ν = Ree→νν . Adapted from Ref. [5].

reaction ee → νν as the temperature cools down. This is because as Tν cools down,3108

the density of relic neutrinos becomes so low and their energy becomes too small to3109

interact. However, the hot and rich electron-positron plasma can still annihilate into3110

neutrino pairs without any difficulties.3111

Solving the dynamic equation of neutrino abundance Eq.(3.146), the general so-3112

lution can be written as3113

nν(T ) = nrelic(T ) + nextra(T ), T = Tγ,e± , (3.148)

where nrelic represents the relic neutrino number density and nextra is the extra num-3114

ber density from the e± annihilation. The relic neutrino density is given by3115

nrelic = n0ν exp

(
−3
∫ t

ti

dt′H(t′)

)
= n0ν exp

(
3

∫ T

Ti

dT ′

T ′
(1 + F)

)
, (3.149)

n0ν = gν
3ζ(3)

4π2
T 3
i , F =

T

3g∗s

dg∗s
dT

, (3.150)

where Ti is the initial temperature and g∗s is the entropy degrees of freedom. The3116

extra neutrino density can be written as3117

nextra = − exp

(
3

∫ T

Ti

dT ′

T ′
(1 + F)

)

×
∫ T

Ti

dT ′

T ′
Ree(T

′)−Rνν(T
′
ν)

H(T ′)
(1 + F) exp

(
−3
∫ T ′

Ti

dT ′′

T ′′
(1 + F)

)
.

(3.151)
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Fig. 34. The temperature ratio Tν/Tγ,e± (blue line), the rate ratio Rνν→ee/Ree→νν (red
line) and (Ree→νν − Rνν→ee)/Ree→νν (green line) as a function of temperature. It shows
that the reaction νν → ee is small compare to the reaction ee → νν as temperature cooling
down. Adapted from Ref. [5].

3118

In Fig. 35 we plot the ratio between nextra/nrelic as a function of temperature3119

with different neutrino freeze-out temperature Tf . It shows that the number of ex-3120

tra neutrinos depends strongly on the parameter Tf . This is because the freeze-out3121

temperature determines the timing of the entropy transfer between e± and photon,3122

which subsequently affects the evolution of temperature ratio between neutrinos and3123

photons in the early Universe. The temperature ratio affects the rate ratio between3124

νν → ee and ee → νν, because once the neutrino is too cold and the back reaction3125

νν → ee can not maintain the balance, the e± annihilation starts to feed the extra3126

neutrinos to the relic neutrino background.3127

In addition to the annihilation of electron-positron pairs, there are other sources3128

that can contribute to the presence of extra neutrinos in the early Universe. These3129

additional sources include particle physics phenomena and plasma effects: neutrinos3130

from charged leptons µ±, τ± decay, neutrinos from the π± decay, and neutrino radia-3131

tion from massive photon decay in electron-positron rich plasma. All of these potential3132

sources of extra neutrinos can impact the distribution of freely streaming neutrinos3133

and the effective number of neutrinos. Understanding these effects is crucial to com-3134

prehending how the neutrino component influences the expansion of the Universe, as3135

well as the potential implications for large-scale structure formation and the spectrum3136

of relic neutrinos.3137

3.6 Neutrinos Today3138

We end our exploration of neutrino freeze-out by studying the distribution of free-3139

streaming relic neutrinos in the present day, as seen from the frame of the Earth.3140
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Fig. 35. the ratio between nextra/nrelic as a function of temperature with different neutrino
freeze-out temperature Tf . It shows that the higher freeze-out temperature Tf the higher
number of extra neutrinos can be produced. Adapted from Ref. [5].

Experimental detection of the cosmic background neutrinos is a challenge of great3141

interest [144,145,146,147,148,149,150,151,152,153,154,155]. With the recently pro-3142

posed PTOLEMY experiment, which aims to detect relic electron-neutrino capture by3143

tritium [156], the characterization of the relic neutrino background is increasingly rel-3144

evant. Using our characterization of the neutrino distribution after freeze-out and the3145

subsequent free-streaming dynamics from Section 3.3 and [26], we lay groundwork for3146

a characterization of the present day relic neutrino spectrum, which we explore from3147

the perspective of an observer moving relative to the neutrino background, including3148

the dependence on neutrino mass and effective number of neutrinos, N eff
ν . Beyond3149

consideration of the observable neutrino distributions, we evaluate the O(G2
F ) me-3150

chanical drag force acting on the moving observer. This section is adapted from the3151

work in [22].3152

Neutrino Distribution in a Moving Frame3153

The neutrino background and the cosmic microwave background (CMB) were in equi-3154

librium until decoupling (called freeze-out) at Tk ≃ O(MeV), hence one surmises that3155

an observer would have the same relative velocity relative to the relic neutrino back-3156

ground as with CMB. As a particular example in considering the spectrum, we present3157

in more detail the case of an observer comoving with Earth velocity v⊕ = 300 km/s3158

relative to the CMB, modulated by orbital velocity (±29.8 km/s). We will write ve-3159

locities in units of c, though our specific results will be presented in km/s.3160

In the cosmological setting, for T < Tk the neutrino spectrum evolves according to3161

the well known Fermi-Dirac-Einstein-Vlasov (FDEV) free-streaming distribution [147,3162

49,118,26]. By casting it in a relativistically invariant form we can then make a3163

transformation to the rest frame of an observer moving with relative velocity vrel and3164
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obtain3165

f(pµ) =
1

Υ−1e
√

(pµUµ)2−m2
ν/Tν + 1

. (3.152)

The 4-vector characterizing the rest frame of the neutrino FDEV distribution is3166

Uµ = (γ, 0, 0, vrelγ) , γ = 1/
√
1− v2rel , (3.153)

where we have chosen coordinates so that the relative motion is in the z-direction.3167

The neutrino effective temperature Tν(t) = Tk (a(tk)/a(t)) is the scale-shifted3168

freeze-out temperature Tk. Here a(t) is the cosmological scale factor where ȧ(t)/a(t) ≡3169

H is the observable Hubble parameter. Υ is the fugacity factor, here describing the3170

underpopulation of neutrino phase space that was frozen into the neutrino FDEV3171

distribution in the process of decoupling from the e±, γ-QED background plasma.3172

There are several available bounds on neutrino masses. Neutrino energy and pres-3173

sure components are important before photon freeze-out and thus mν impacts Uni-3174

verse dynamics. The analysis of CMB data alone leads to
∑

im
i
ν < 0.66eV (i =3175

e, µ, τ) and including Baryon Acoustic Oscillation (BAO) gives
∑
mν < 0.23eV [62].3176

PLANCK CMB with lensing observations [157] lead to
∑
mν = 0.32±0.081 eV. Upper3177

bounds have been placed on the electron neutrino mass in direct laboratory measure-3178

ments mν̄e
< 2.05eV [158]. In the subsequent analysis we will focus on the neutrino3179

mass range 0.05eV to 2eV in order to show that direct measurement sensitivity allows3180

the exploration of a wide mass range.3181

The relations in Eq. (3.91) - Eq. (3.93), see also [26], determine Tν/Tγ and Υ in3182

terms of the measured value of N eff
ν under the assumption of a strictly SM-particle3183

inventory. In the following we treat N eff
ν as a variable model parameter and use the3184

above mentioned relations to characterize our results in terms of N eff
ν .3185

Velocity, Energy, and Wavelength Distributions3186

Using Eq. (3.152), the normalized FDEV velocity distribution for an observer in rel-3187

ative motion has the form3188

fv =
gν

nν4π2

∫ π

0

p2dp/dv sin(ϕ)dϕ

Υ−1e
√

(E−vrelp cos(ϕ))2γ2−m2
ν/Tν + 1

,

p(v) =
mνv√
1− v2

,
dp

dv
=

mν

(1− v2)3/2
. (3.154)

The normalization nν depends on N eff
ν but not on mν since decoupling occurred at3189

Tk ≫ mν . For each neutrino flavor (all flavors are equilibrated by oscillations) we3190

have, per neutrino or antineutrino and at nonrelativistic relative velocity,3191

nν = [−0.3517(δN eff
ν )2 + 6.717δN eff

ν + 56.06] cm−3 (3.155)

(δN eff
ν ≡ N eff

ν − 3), compare to Eq.(55) in Ref. [26].3192

We show fv in Figure 36 for several values of the neutrino mass, vrel = 300 km/s,3193

and N eff
ν = 3.046 (solid lines) and N eff

ν = 3.62 (dashed lines). As expected, the lighter3194

the neutrino, the more fv is weighted towards higher velocities with the velocity3195

becoming visibly peaked about vrel for mν = 2 eV.3196

A similar procedure produces the normalized FDEV energy distribution fE . In3197

Eq. (3.154) we replace dp/dv → dp/dE where it is understood that3198

p(E) =
√
E2 −m2

ν ,
dp

dE
=
E

p
. (3.156)
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Fig. 36. Normalized neutrino FDEV velocity distribution in the Earth frame. We show
the distribution for Neff

ν = 3.046 (solid lines) and Neff
ν = 3.62 (dashed lines). Published in

Ref. [22] under the CC BY 4.0 license

We show fE in Figure 37 for several values of the neutrino mass, vrel = 300 km/s,3199

and N eff
ν = 3.046 (solid lines) and N eff

ν = 3.62 (dashed lines). The width of the FDEV3200

energy distribution is on the micro-eV scale and the kinetic energy T = E −mν is3201

peaked about T = 1
2mνv

2
rel, implying that the relative velocity between the Earth3202

and the CMB is the dominant factor for mν > 0.1 eV.3203

By multiplying fE by the neutrino velocity and number density for a single neu-3204

trino flavor (without anti-neutrinos) we obtain the particle flux density,3205

dJ

dE
≡ dn

dAdtdE
, (3.157)

shown in Figure 38. We show the result for N eff
ν = 3.046 (solid lines) and N eff

ν = 3.623206

(dashed lines). The flux is normalized in these cases to a local density 56.36 cm−33207

and 60.10 cm−3 respectively.3208

The precise neutrino flux in the Earth frame is significant for efforts to detect3209

relic neutrinos, such as the PTOLEMY experiment [156]. The energy dependence of3210

the flux shows a large sensitivity to the mass. However, the maximal fluxes do not3211

vary significantly with m. In fact the maximum values are independent of m when3212

vrel = 0, as follows from the fact that v = p/E = dE/dp. In the Earth frame, where3213

0 < v⊕ ≪ c, this translates into only a small variation in the maximal flux.3214

Using λ = 2π/p we find the normalized FDEV de Broglie wavelength distribution3215

fλ =
2πgν
nνλ4

∫ π

0

sin(ϕ)dϕ

Υ−1e
√

(E−vrelp cos(ϕ))2γ2−m2
ν/Tν+1

, (3.158)

shown in Figure 39 for vrel = 300 km/s and for several values mν comparing N eff
ν =3216

3.046 with N eff
ν = 3.62.3217

https://creativecommons.org/licenses/by/4.0/
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Fig. 37. Neutrino FDEV energy distribution in the Earth frame. We show the distribution
for Nν = 3.046 (solid lines) and Nν = 3.62 (dashed lines). Published in Ref. [22] under the
CC BY 4.0 license

Drag Force3218

Given the neutrino distribution, we evaluate the drag force due to the anisotropy of3219

the neutrino distribution in the rest frame of the moving object for N eff
ν = 3.046.3220

The relic neutrinos will undergo potential scattering with the scale of the potential3221

strength being3222

V0 = CGF ρNc , ρN ≡ Nc/R
3 (3.159)

where R is the linear size of the detector.3223

When the detector size is smaller than the quantum de Broglie wavelength of3224

the neutrino, all scattering centers are added coherently to for the target effective3225

‘charge’ Nc. ρNc is the charge density, and C=O(1) and is depending on material3226

composition of the object. Such considerations are of interest both for scattering3227

from terrestrial detectors, as well as for ultra-dense objects of neutron star matter3228

density, e.g. strangelet CUDOS [159] - recall that such nuclear matter fragments with3229

R < λ despite their small size would have a mass rivaling that of large meteors. We3230

find V0 ≃ 10−13 eV for normal matter densities, but for nuclear target density a3231

potential well with V0 ≃ O(10eV).3232

We consider relic neutrino potential scattering to obtain the average momentum3233

transfer to the target and hence the drag force. The particle flux per unit volume in3234

momentum space is3235

dn

dtdAd3p
(p) =

2

(2π)3
f(p)p/mν , p ≡ |p| , (3.160)

where the factor of two comes from combining neutrinos and anti-neutrinos of a given3236

flavor.3237

https://creativecommons.org/licenses/by/4.0/
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Our use of nonrelativistic velocity is justified by Fig. 36. The recoil change in3238

detector momentum per unit time is3239

dp

dt
=

∫
qA

dn

dtdAd3p
(p)d3p , (3.161)

qA ≡
∫
(p− pf )

dσ

dΩ
(pf ,p)dΩ . (3.162)

Here p and pf , the incoming and outgoing momenta respectively, have the same mag-3240

nitude. qA is the momentum transfer times area, averaged over outgoing momenta,3241

and dΩ is the solid angle for to pf .3242

For a spherically symmetric potential the differential cross section depends only3243

on the incoming energy and the angle ϕ between p and pf . Therefore, for each p the3244

integral over dΩ of the components orthogonal to p is zero by symmetry. This implies3245

qA ≡2πp
∫
(1− cos(ϕ))

dσ

dΩ
(p, ϕ) sin(ϕ)dϕ . (3.163)

The only angular dependence in the neutrino distribution is in p · ẑ and therefore the3246

components of the force orthogonal to ẑ integrate to zero, giving3247

dp

dt
=

ẑ

πmν

∫
p4g(p)f(p, ϕ̃) cos(ϕ̃) sin(ϕ̃)dpdϕ̃ , (3.164)

g(p) ≡
∫ π

0

(1− cos(ϕ))
dσ

dΩ
(p, ϕ) sin(ϕ)dϕ . (3.165)

For the case of normal density matter, the Born approximation is valid due to3248

the weakness of the potential compared to the neutrino energy seen in Figure 37. To3249

obtain an order of magnitude estimate, we take a Gaussian potential3250

V (r) = V0e
−r2/R2

(3.166)

for which the differential cross section in the Born approximation can be analytically3251

evaluated3252

dσ

dΩ
(p, ϕ) =

πm2
νV

2
0 R

6

4
e−q

2R2/2 ,

q = |p− pf | = 2p sin(ϕ/2) . (3.167)

The integral over ϕ in Eq. (3.165) can also be done analytically, giving3253

g(p) =πm2
νV

2
0 R

6 1− (2R2p2 + 1)e−2R
2p2

4R4p4
. (3.168)

In the long and short wavelength limit we have3254

g(p) ≃ π

2
m2

νV
2
0 R

6 , pR≪ 1 , (3.169)

FL ≃
mνV

2
0 R

6

2

∫
p4f(p, ϕ̃) cos(ϕ̃) sin(ϕ̃)dpdϕ̃ ,

g(p) ≃ πm2
νV

2
0 R

2

4p4
, pR≫ 1 , (3.170)

FS ≃
mνV

2
0 R

2

4

∫
f(p, ϕ̃) cos(ϕ̃) sin(ϕ̃)dpdϕ̃ .
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We also note that in the short wavelength limit, our coherent scattering treatment is3255

only applicable to properly prepared structured targets [154].3256

Inserting Eq. (3.159) we see that this force is O(G2
F ), see also [146,148,152], as3257

compared to the O(GF ) effects debated in [160,102,161,145,147,148,149]. In long3258

wavelength limit the size R cancels, in favor of N2
c which explicitly shows that scat-3259

tering is on the square of the charges of the target.3260

This results in an enhancement of the force by a factor of Nc over the incoherent3261

scattering case, due to V 2
0 scaling with N2

c . This effect exactly parallels the proposed3262

detection of supernovae MeV energy scale neutrinos by means of collisions with the3263

entire atomic nucleus [162].3264

Fits to the integrals in the above force formulas Eq. (3.169) and Eq. (3.170) can3265

be obtained in the region 0.005eV ≤ mν ≤ 0.25eV, vrel ≤ 300km/s, yielding3266

FL=810−34N
( mν

0.1eV

)2( V0
1peV

)2(
R

1mm

)6
vrel
v⊕

, (3.171)

FS =210−35N
( mν

0.1eV

)2( V0
1peV

)2(
R

1mm

)2
×

× vrel
v⊕

(
1−0.2 mν

0.1eV

vrel
v⊕

)
. (3.172)

We emphasize that they are not valid in the limit as mν → 0. Considering that the3267

current frontier of precision force measurements at the level of individual ions is on the3268

order of 10−24N [163], the O(G2
F ) force on a coherent mm-sized terrestrial detector3269

is negligible, despite the factor of Nc enhancement.3270

We now consider scattering from nuclear matter density ρN ≃ 3 108kg/mm
3
ob-3271

jects where V0 = O(10eV) is effectively infinite compared to the neutrino energy3272

unless the object velocity relative to the neutrino background is ultra-relativistic.3273

Therefore we are in the hard ‘ball’ scattering limit. As with the analysis for normal3274

matter density, we will investigate both the long and short wavelength limits.3275

In the long wavelength limit, only the S-wave contributes to hard sphere scatter-3276

ing and dσ/dΩ = R2, independent of angle. Using Eq. (3.164) and a similar fit to3277

Eq. (3.171) gives3278

FL =
2π2R2

πmν

∫
p4f(p, ϕ̃) cos(ϕ̃) sin(ϕ̃)dpdϕ̃

≃ 2 10−22N

(
R

1mm

)2
vrel
v⊕

. (3.173)

In particular the force is independent of mν . We also note that at high velocity,3279

Eq. (3.173) underestimates the drag force. The resulting acceleration is3280

a = 410−31
m

s2
vrel
v⊕

(
R

1mm

)−1(
ρ

ρN

)−1
. (3.174)

The Newtonian drag time constant, vrel/a, is3281

τ = 21028yr
R

1mm

ρ

ρN
, (3.175)

which suggests that the compact object produced early on in stellar evolution remain3282

largely unaltered.3283
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The last case to consider is the short wavelength hard sphere scattering limit.3284

This limit is classical and so we no longer treat it as quantum mechanical potential3285

scattering, but rather as elastic scattering of point particle neutrinos from a hard3286

sphere of radius R.3287

For a single scattering event where the component of the momentum normal to3288

the sphere is p⊥ = (p · r̂)r̂, the change in particle momentum is ∆p = −2p⊥. The3289

particle flux per unit volume in momentum space at a point r on a radius R sphere3290

S2
R and inward pointing momentum p (i.e. p · r̂ < 0) is3291

dn

dtdAd3p
(x,p) =

2

(2π)3
f(p)|v · r̂| , (3.176)

where the factor of two comes from combining neutrinos and anti-neutrinos of a given3292

flavor.3293

Note that for point particles the flux is proportional to the normal component of3294

the velocity, as opposed to wave scattering where it is proportional to the magnitude3295

of the velocity, seen in Eq. (3.160).3296

Using Eq. (3.176), the recoil change in momentum per unit time is3297

dp

dt
= − 2

(2π)3

∫
p·r̂<0

∆pf(p)
1

mν
|p · r̂|d3pR2dΩ . (3.177)

The only angular dependence in f is through p · ẑ so by symmetry, the x̂ and ŷ3298

components integrate to 0. Therefore we have3299

dp

dt
= − R2ẑ

2π3mν

∫
p·r̂<0

f(p)(p · r̂)2r̂ · ẑ d3pdΩ . (3.178)

We perform this integration in spherical coordinates for r and in the spherical3300

coordinate vector field basis for p = pr r̂+ pθ r̂θ + pϕr̂ϕ, pr < 0, where we recall3301

r̂ = cos θ sinϕ x̂+ sin θ sinϕŷ + cosϕ ẑ ,

r̂θ = − sin θx̂+ cos θŷ , (3.179)

r̂ϕ = cos θ cosϕ x̂+ sin θ cosϕ ŷ − sinϕ ẑ .

Therefore the force per unit surface area is3302

1

A

dp

dt
=− 1

4π3mν

∫ π

0

∫
pr<0

f(p)p2rd
3p cosϕ sinϕdϕẑ ,

f(p) =
1

Υ−1e
√

(E−V⊕p·ẑ)2γ2−m2
ν/Tν + 1

, (3.180)

p · ẑ = pr cosϕ− pϕ sinϕ .

We obtain an approximation over the range vrel ≤ v⊕; 0.05eV ≤ mν ≤ 0.25eV3303

given by3304

FS = 410−23N

(
R

1mm

)2
vrel
v⊕

. (3.181)

This is a similar result to the long wavelength hard sphere limit Eq. (3.173), but the3305

fact that it is only applicable to objects larger than the neutrino wavelength means3306

that the acceleration it generates is negligible on the timescale of the Universe.3307
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Prospects for Detecting Relic Neutrinos3308

In this section we characterized the relic cosmic neutrinos and their velocity, energy,3309

and de Broglie wavelength distributions in a frame of reference moving relative to3310

the neutrino background. We have shown explicitly the mass mν dependence and3311

the dependence on neutrino reheating expressed by N eff
ν , choosing a range within the3312

experimental constraints. This is a necessary input for the measurement of N eff
ν and3313

neutrino mass by future detection efforts.3314

Finally, we have discussed in detail the O(G2
F ) mechanical drag force originating3315

in the dipole anisotropy induced by motion relative to the neutrino background.3316

Despite enhancement with the total target charge found within the massive neutrino3317

wavelength, the magnitude of the force is found to be well below the reach of current3318

precision force measurements.3319

Our results are derived under the assumption that N eff
ν is due entirely to SM3320

neutrinos, with no contribution from new particle species. In principle future, relic3321

neutrino detectors, such as PTOLEMY [156], will be able to distinguish between3322

these alternatives since the effect of N eff
ν as presented here is to increase neutrino3323

flux [26], see Eq. (3.155). However, to this end one must gain precise control over the3324

enhancement of neutrino galactic relic density due to gravitational effects [164] as3325

well as the annual modulation [165].3326

4 Charged Leptons and Neutrons before BBN3327

4.1 Timeline for charged leptons in early Universe3328

Charged leptons τ±, µ±, e± played significant roles in the dynamics and evolution3329

of the early Universe. They were kept in equilibrium via electromagnetic and weak3330

interactions. In this chapter, we examine a dynamical model of the abundance of3331

charged leptons µ± and e± in the early Universe. Of particular interest in this work3332

is the dense electron-positron plasma present during the early Universe evolution. We3333

study the damping rate and the magnetization process in this dense e± plasma in the3334

early Universe.3335

We comment briefly on the case of τ± which is different as their mass mτ =3336

1776.86MeV is above a threshold allowing the τ± to decay into hadrons in about 2/33337

of their decays mediated by the charged EW W-gauge boson; the vacuum lifespan for3338

τ± is [45]3339

ττ = (290.3± 0.5)× 10−15 sec . (4.1)

τ± disappears from the Universe via multi-particle decay processes at a temperature3340

the Universe is filled with hadronic gas at T ≃ 75MeV. Therefore, the full under-3341

standing of τ dynamics in the Universe is not of immediate individual importance3342

given the other relevant constituents.3343

On the other hand understanding the µ± lepton abundance is required for the3344

understanding of several fundamental questions regarding properties of the primordial3345

Universe after the freeze-out of residual baryon asymmetry below T = 38MeV. Muons3346

play an important role in the dynamics of the ensuing freeze-out of strangeness flavor3347

in the early Universe. We recall that the strangeness decay often proceeds into muons,3348

energy thresholds permitting; the charged kaons K± have a 63% branching into µ+ν̄µ.3349

The disappearance of muons has therefore direct impact in strangeness flavor3350

population in the Universe. Muons are relatively strongly connected to charged pions3351

through the decay and production reaction3352

π± ↔ µ± + νµ . (4.2)
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The decay process is nearly exclusive. The back reaction remains active down to3353

relatively low temperature of a few MeV, as long as muons remain in the Universe3354

thermal population inventory. We conclude that if and when muons fall out of their3355

thermal abundance equilibrium this would directly impact the detailed balance back-3356

reaction processes involving strangeness.3357

The lightest charged leptons e± can persist via the reaction γγ → e−e+ until3358

below T ≃ 20.3 keV any remaining positron rapidly disappears through annihilation,3359

leaving only residual electrons required to maintain the Universe’s charge neutrality3360

considering the baryon (proton) abundance. The long lasting existence of an electron-3361

positron plasma down to temperature range just above T = 20 keV plays a pivotal3362

role in several aspects of the early Universe:3363

1. The primordial electron-positron plasma has not received the appropriate at-3364

tention in the context of precision Big-Bang nucleosynthesis (BBN) studies. However,3365

the presence of dense eē-pair plasma before and during BBN has been recognized3366

already a decade ago by Wang, Bertulani and Balantekin [166]. The primordial syn-3367

thesis of light elements is found [52] to typically takes place in the temperature range3368

86 keV > TBBN > 50 keV. Within this temperature range we show below presence3369

of millions of electron-positron pairs per every charged nucleon and plasma densi-3370

ties which reach millions of times normal atomic particle density [5,8]. Given that the3371

BBN nucleosynthesis processes occur in an electron-positron-rich plasma environment3372

we explore in this work the effect of modifications in the nuclear repulsive Coulomb3373

potential due to the in plasma screening effects on BBN nuclear reactions [3,6].3374

2. The Universe today is filled with magnetic fields at various scales and strengths,3375

both within galaxies, and in deep extra-galactic space. The origin of these magnetic3376

fields is currently unknown. In the early Universe, above temperature T > 20 keV, we3377

have a dense nonrelativistic e± plasma which could prove to be primordial origin of3378

cosmic magnetism as we describe below [4,1,7] and Sec. 7. We will show that beyond3379

electric currents the magnetic moments of electrons can contribute to spin based3380

magnetization process.3381

Understanding the abundances of µ+µ− and e+e−-pair plasma provides essential3382

insights into the evolution of the primordial Universe. In the following we discuss the3383

muon density down to their persistence temperature in section 4.1, and explore the3384

electron/positron plasma properties, including the QED plasma damping rate and3385

damped dynamic screening in section 4.2.3386

Muon pairs in the early Universe3387

Our interest in strangeness flavor freeze-out in the early Universe requires the un-3388

derstanding of the abundance of muons in the early Universe. The specific question3389

needing an answer is at which temperature muons remain in abundance (chemical)3390

equilibrium established predominantly by electromagnetic and weak interaction pro-3391

cesses, allowing diverse detailed-balance back-reactions to influence the primordial3392

strangeness abundance.3393

In the early Universe in the the cosmic plasma muons of mass mµ = 105.66MeV3394

can be produced by the following interaction processes [5,12]3395

γ + γ −→ µ+ + µ−, e+ + e− −→ µ+ + µ− , (4.3)

π− −→ µ− + ν̄µ, π+ −→ µ+ + νµ . (4.4)

The back reactions for all above processes are in detailed balance, provided all par-3396

ticles shown on the right hand side (RHS) exist in chemical abundance equilib-3397

rium in the Universe. We recall the empty space (no plasma) at rest lifetime of3398

charged pions τπ = 2.6033 × 10−8 s. We note that neutral pions decay much faster3399

τπ0 = 8.43× 10−17 s.3400
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Any of the produced muons can decay via the well known reactions3401

µ− → νµ + e− + ν̄e, µ+ → ν̄µ + e+ + νe , (4.5)

with the empty space (no plasma) at rest lifetime τµ = 2.197× 10−6 s.3402

The temperature range of our interests is the Universe when mµ ≫ T . In this case3403

the Boltzmann approximation is appropriate for studying massive particles such as3404

muons and pions. The thermal decay rate per volume and time for muons µ± (and3405

pions π±) in the Boltzmann limit are given by [28]:3406

Rµ =
gµ
2π2

(
T 3

τµ

)(mµ

T

)2
K1(mµ/T ) , (4.6)

Rπ =
gπ
2π2

(
T 3

τπ

)(mπ

T

)2
K1(mπ/T ) , (4.7)

where the lifespan of µ± and π± in the vacuum were given above. This rate accounts3407

for both the density of particles in chemical abundance equilibrium and the effect of3408

time dilation present when particles are in thermal motion with respect to observer3409

at rest in the local reference frame. The quantum effects of Fermi blocking or boson3410

stimulated emission have been neglected using Boltzmann statistics.3411

Muon production processes3412

The thermal averaged reaction rate per volume for the reaction aa→ bb in Boltzmann3413

approximation is given by [30]3414

Raa→bb =
gaga
1 + I

T

32π4

∫ ∞
sth

ds
s(s− 4m2

a)√
s

σaa→bb K1(
√
s/T ), (4.8)

where sth is the threshold energy for the reaction, σaa→bb is the cross section for3415

the given reaction, and K1 is the modified Bessel function of integer order “1”. We3416

introduce the factor 1/1 + I to avoid the double counting of indistinguishable pairs3417

of particles; we have I = 1 for an identical pair and I = 0 for a distinguishable pair.3418

The leading order invariant matrix elements for the reactions e++ e− → µ++µ−3419

and γ + γ → µ+ + µ−, are introduced in this work by [86]3420

|Meē→µµ̄|2 =32π2α2
(m2

µ − t)2 + (m2
µ − u)2 + 2m2

µs

s2
, mµ ≫ me , (4.9)

|Mγγ→µµ̄|2 =32π2α2

[(
m2

µ − u
m2

µ − t
+
m2

µ − t
m2

µ − u

)
+ 4

(
m2

µ

m2
µ − t

+
m2

µ

m2
µ − u

)
(4.10)

− 4

(
m2

µ

m2
µ − t

+
m2

µ

m2
µ − u

)2 ]
,

where s, t, u are the Mandelstam variables. The cross section required in Eq. (4.8)3421

can be obtained by integrating the matrix elements Eq. (4.9) and Eq. (4.10) over the3422
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Mandelstam variable t [28]. We have3423

σeē→µµ̄ =
64πα2

48π

(
1 + 2m2

µ/s

s− 4m2
e

)√
1−

4m2
µ

s
, (4.11)

σγγ→µµ̄ =
π

2

(
α

mµ

)2

(1− β2)

[
(3− β4) ln

1 + β

1− β
− 2β(2− β2)

]
, (4.12)

β =
√
1− 4m2

µ/s (4.13)

Substituting the cross sections into Eq. (4.8) we obtain the production rates for eē→3424

µµ̄ and γγ → µµ̄ respectively.3425

In Fig. 40 we show the invariant thermal reaction rates per volume and time for3426

rates of relevance, as a function of temperature T . It is important to first note that the3427

pion decay rate is smaller compared to the other rates in the domain of temperatures3428

we are interested.3429

As the temperature decreases in the expanding Universe, the initially dominant3430

production rates (eē, γγ → µµ̄) decrease with decreasing temperature, and eventually3431

cross the µ± decay rates. The muon abundance disappears as soon as any known3432

decay rate is faster than the fastest production rate. We see that irrespective of3433

charged pion abundance muons persist until the Universe cools below the temperature3434

Tdisappear = 4.195MeV, below that temperature the dominant reaction is the muon3435

decay. Due to the relatively slow expansion of the Universe, the disappearance of3436

muons is sudden, and the abundance of muons vanishes as soon as a fast microscopic3437

decay rate surpasses the dominant production rate.3438

Considering the number density for nonrelativistic µ± in the Boltzmann approx-3439

imation, we obtain3440

nµ± =
gµ±

2π2
T 3
(mµ

T

)2
K2(mµ/T ) = gµ±

(
mµT

2π

)3/2

e−mµ/T . (4.14)

The ration of the number density between nµ± and baryons nB can be written as3441

follows3442

nµ±

nB
=
nµ±

s

s

nB
=
nµ±

s

[
s

nB

]
t0

, (4.15)

where we assume that s/nB the ration of entropy to baryon number remains con-3443

stant and t0 represent present day value. The present value is given by (nB/s)t0 ≈3444

8.69 × 10−11. We recall, see Fig. 2, that the entropy density s can be characterized3445

introducing gs∗, the total number of ‘entropic’ degrees of freedom3446

s =
2π2

45
gs∗T

3 . (4.16)

For temperature 10MeV > T > 3MeV, the massless photons, nearly relativistic3447

electron and positrons, and practically massless neutrinos contribute to the degree3448

of freedom gs∗. In this case, the number density between nµ± and baryon nB in the3449

temperature interval we consider 10MeV > T > 3MeV is given by3450

nµ±

nB
=

45

2π2

gµ±

gs∗

( mµ

2πT

)3/2
e−mµ/T

(
s

nB

)
t0

. (4.17)
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Fig. 40. The thermal reaction rate per unit time and units volume for different reactions as
a function of temperature. The dominant reactions for µ± production are γ + γ → µ+ + µ−

and e+ + e− → µ+ + µ−, and the total production rate crosses the decay rate of µ± at
temperature Tdissapear ≈ 4.195MeV. Published in Ref. [1] under the CC BY 4.0 license.
Adapted from Ref. [5,12]

Comparison of muon and baryon abundance3451

In Fig. 41 we show the muon to baryon density ratio Eq. (4.17) as a function of3452

T . We see that the very small muon pair abundance at T = 10MeV exceeds that3453

of residual baryons by a factor 500,000 while at muon disappearance temperature3454

nµ±/nB(Tdisappear) ≈ 0.911. The number density nµ± and nB abundances are equal3455

at around the temperature Tequal ≈ 4.212MeV > Tdisappear. This means that the3456

muon abundance may still be able to influence baryon evolution because their number3457

density is comparable to the baryon density. Note that we tacitly assumed that the3458

charge asymmetry balancing the charge in protons is contained in the much more3459

abundant electron-positron pairs, this hypothesis needs to be revisited in the future.3460

The primary insight of this work is that aside of protons, neutrons and other non-3461

relativistic particles, both positively and negatively charged muons µ± are present3462

in thermal equilibrium and in non-negligible abundance exceeding baryon abundance3463

down to T > Tdissapear ≈ 4.195MeV. This offers a new and tantalizing model building3464

opportunity for anyone interested in baryon-antibaryon separation in the primordial3465

Universe, strangelet formation, and perhaps other exotic primordial structure forma-3466

tion mechanisms.3467

4.2 Electron-positron plasma and BBN3468

Following on the neutrino freeze-out at T ≈ 2MeV, the Universe is dominated by the3469

electron-positron-photon QED plasma. In this section, we derive the electron-positron3470

density and chemical potential required for local charge neutrality of the Universe to3471

show that during the normal BBN temperature range 86.7 keV > TBBN > 50 keV [52]3472

https://creativecommons.org/licenses/by/4.0/
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Fig. 41. The density ratio between µ± and baryons as a function of temperature. The
density ratio at muon disappearance temperature is about nµ±/nB(Tdisappear) ≈ 0.911, and
around the temperature T ≈ 4.212MeV the density ratio nµ±/nB ≈ 1. Published in Ref. [1]
under the CC BY 4.0 license. Adapted from Ref. [5,12]

the Universe was filled with a dense electron-positron pair-plasma dotted with a3473

dispersed baryonic matter dust. We then examine the microscope collision properties3474

of the electron-positron plasma in the early Universe allowing us to use appropriately3475

generalized methods of plasma physics in a study of the role of the e+e− plasma in3476

the Universe. The time scale of Universe expansion H−1 is orders of magnitude larger3477

than the microscopic reaction time scales of interest for all processes we consider,3478

the dynamical processes we consider are thus occurring in expanding, but stationary3479

Universe.3480

Electron chemical potential and number density3481

We obtain the dependence of electron chemical potential, and hence e+e− density,3482

as a function of the photon background temperature T by employing the following3483

physical principles3484

1. Charge neutrality of the Universe:3485

ne− − ne+ = np − np ≈ np, (4.18)

where nℓ denotes the number density of particle type ℓ.3486

2. Neutrinos decouple (freeze-out) at a temperature Tf ≃ 2MeV, after which they3487

free stream through the Universe with an effective temperature [26]3488

Tν(t) = Tf
a(tf )

a(t)
, (4.19)

where a(t) is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) Universe scale3489

factor (see cosmology primer Sec. 1.3) which is a function of cosmic time t, and tf3490

represents the cosmic time when neutrino freezes out.3491

https://creativecommons.org/licenses/by/4.0/
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3. The total comoving entropy is conserved. At T ≤ Tf , the dominant contributors3492

to entropy are photons, e+e−, and neutrinos. In addition, after neutrino freeze3493

out, neutrino comoving entropy is independently conserved [26]. This implies that3494

the combined comoving entropy in e+e−γ is also conserved for T ≤ Tf .3495

Motivated by the fact that comoving entropy in γ, e+e− is conserved after neutrino3496

freeze-out, we rewrite the charge neutrality condition, Eq. (4.18), in the form3497

ne− − ne+ = Xp
nB
sγ,e±

sγ,e± , Xp ≡
np
nB

, (4.20)

where nB is the number density of baryons, sγ,e± is the combined entropy density3498

in photons, electrons, and positrons. During the Universe expansion, the comoving3499

entropy and baryon number are conserved quantities; hence the ratio nB/sγ,e± is3500

conserved. We have3501

nB
sγ,e±,

=

(
nB
sγ,e±

)
t0

=

(
nB
sγ

)
t0

=

(
nB
nγ

)
t0

(
nγ
sγ

)
t0

, (4.21)

where the subscript t0 denotes the present day value, and the second equality is ob-3502

tained by observing that the present day e+e−-entropy density is negligible compared3503

to the photon entropy density. We can evaluate the ratio introducing the present day3504

baryon-to-photon ratio: B/Nγ = nB/nγ = 0.605 × 10−9 as obtained from the Cos-3505

mic Microwave Background (CMB) [45], and the entropy per particle for a massless3506

boson: (s/n)boson ≈ 3.602.3507

The total entropy density of photons, electrons, and positrons can be written as3508

sγ,e± =
2π2

45
gγ T

3 +
ρe± + Pe±

T
− µe

T
(ne− − ne+), (4.22)

where ρe± = ρe− +ρe+ and Pe± = Pe− +Pe+ are the total energy density and pressure3509

of electrons and positron respectively.3510

By incorporating Eq. (4.20) and Eq. (4.22), the charge neutrality condition can be3511

expressed as3512 [
1 +Xp

(
nB
nγ

)
t0

(
nγ
sγ

)
t0

µe

T

]
ne− − ne+

T 3

= Xp

(
nB
nγ

)
t0

(
nγ
sγ

)
t0

(
2π2

45
gγ +

ρe± + Pe±

T 4

)
. (4.23)

Using Fermi distribution, the number density of electrons over positrons in the3513

early Universe is given by3514

ne− − ne+ =
ge
2π2

[∫ ∞
0

p2dp

exp ((E − µe)) /T + 1
−
∫ ∞
0

p2dp

exp ((E + µe)/T ) + 1

]
=

ge
2π2

T 3 tanh(be)M
3
e

∫ ∞
1

η
√
η2 − 1dη

1 + cosh(Meη)/ cosh(be)
, (4.24)

where we have introduced the dimensionless variables as follows:3515

η =
E

me
, Me =

me

T
, be =

µe

T
. (4.25)

Substituting Eq. (4.24) into Eq. (4.23) and giving the value of Xp, then the charge3516

neutrality condition can be solved to determine µe/T as a function of Me and T .3517
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Fig. 42. Left axis: The chemical potential of electrons as a function of temperature (brown
line). Right axis: the ratio of electron (positron) number density to baryon density as a
function of temperature. The solid blue line is the electron density, the red line is the positron
density, and the green dashed line is obtained setting for comparison µe = 0. The vertical
black dotted lines are bounds of BBN epoch. Published in Ref. [8] under the CC BY 4.0
license. Adapted from Ref. [5]

In Fig. 42 (left axis), we show (left axis, brown line) the electron chemical poten-3518

tial as a function of temperature we obtain solving Eq. (4.23) numerically employing3519

the following parameters: proton concentration Xp = 0.878 as derived from observa-3520

tion [45] and nB/nγ = 6.05 × 10−10 from CMB. We can see the value of chemical3521

potential is comparatively small µe/T ≈ 10−6 ∼ 10−7 during the BBN epoch tem-3522

perature range, implying a very small asymmetry in the number of electrons and3523

positrons in plasma is needed to neutralize proton charge.3524

The ratio of electron (positron) number density to baryon density (right axis)3525

shows that the Universe was filled with an electron-positron rich plasma during the3526

BBN temperature range epoch here set in the temperature range 86 keV > TBBN >3527

50 keV. When the temperature is e.g. around T = 70 keV, the density of electrons and3528

positrons is comparatively large ne± ≈ 107 nB . At 90 keV, the electron and positron3529

density is near the solar core density, compare Fig. 19 in Ref. [1]. Near and below the3530

temperature T = 20.3 keV, the positron density decreases rapidly, transforming the3531

pair-plasma into an electron-baryon plasma.3532

QED plasma damping rate3533

The reactions of interest for the evaluation of the QED plasma damping are the3534

(inverse) Compton scattering, the Møller scattering, and the Bhabha scattering, re-3535

spectively3536

e± + γ −→ e± + γ, e± + e± −→ e± + e±, e± + e∓ −→ e± + e∓. (4.26)

https://creativecommons.org/licenses/by/4.0/
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The general formula for thermal reaction rate per volume is discussed in [30] (Eq.(17.16),3537

Chapter 17). For inverse Compton scattering we have3538

Re±γ =
gegγ

16 (2π)
5T

∫ ∞
m2

e

ds
K1(
√
s/T )√
s

∫ 0

−(s−m2
e)

2/s

dt |Me±γ |2, (4.27)

and for Møller and Bhabha reactions we have3539

Re±e± =
gege

16 (2π)
5T

∫ ∞
4m2

e

ds
K1(
√
s/T )√
s

∫ 0

−(s−4m2
e)

dt |Me±e± |2, (4.28)

Re±e∓ =
gege

16 (2π)
5T

∫ ∞
4m2

e

ds
K1(
√
s/T )√
s

∫ 0

−(s−4m2
e)

dt |Me±e∓ |2, (4.29)

where gi is the degeneracy of particle i, |M |2 is the matrix element for a given reaction,3540

K1 is the Bessel function of order 1, and s, t, u are Mandelstam variables. The leading3541

order matrix element associated with inverse Compton scattering can be expressed3542

in the Mandelstam variables [167,168] we have3543

|Me±γ |2= 32π2α2

[
4

(
m2

e

m2
e − s

+
m2

e

m2
e − u

)2

− 4m2
e

m2
e − s

− 4m2
e

m2
e − u

− m2
e − u

m2
e − s

− m2
e − s

m2
e − u

]
, (4.30)

and for Møller and Bhabha scattering we have3544

|Me±e± |2= 64π2α2

[
s2 + u2 + 8m2

e(t−m2
e)

2(t−m2
γ)

2

+
s2 + t2 + 8m2

e(u−m2
e)

2(u−m2
γ)

2
+

(
s− 2m2

e

) (
s− 6m2

e

)
(t−m2

γ)(u−m2
γ)

]
, (4.31)

and3545

|Me±e∓ |2 = 64π2α2

[
s2 + u2 + 8m2

e(t−m2
e)

2(t−m2
γ)

2

+
u2 + t2 + 8m2

e(s−m2
e)

2(s−m2
γ)

2
+

(
u− 2m2

e

) (
u− 6m2

e

)
(t−m2

γ)(s−m2
γ)

]
, (4.32)

where we introduce the photon mass mγ to account the plasma effect and avoid3546

singularity in reaction matrix elements.3547

The photon mass mγ in plasma is equal to the plasma frequency ωp, where we3548

have [169]3549

m2
γ = ω2

p = 8πα

∫
d3pe
(2π)3

(
1− p2e

3E2
e

)
fe + fē
Ee

, (4.33)

where Ee =
√
p2e +m2

e. In the BBN temperature range 86 keV > TBBN > 50 keV we3550

have me ≫ T and considering the nonrelativistic limit for electron-positron plasma,3551

we obtain3552

m2
γ =

4πα

2me

(
2meT

π

)3/2

e−me/T cosh
(µe

T

)
. (4.34)
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Fig. 43. The relaxation rate κ (black line) as a function of temperature in the nonrelativistic
electron-positron plasma, compared to reaction rates for Møller reaction e−+ e− → e−+ e−

(blue dashed line), Bhabha reaction e− + e+ → e− + e+ (red dashed line), and inverse
Compton scattering e− + γ → e− + γ (green dashed line) respectively. The Debye mass

mD = ωp

√
me/T (purple line) is also shown. Published in Ref. [8] under the CC BY 4.0

license. Adapted from Ref. [5]

In the BBN temperature range, we have µe/T ≪ 1, which implies the equal number3553

of electrons and positrons in plasma.3554

To discuss the collisions plasma by the linear response theory, it is convenient to3555

define the average relaxation rate for the electron-positron plasma as follows:3556

κ =
Re±e± +Re±e∓ +Re±γ√

ne−ne+
≈ Re±e± +Re±e∓√

ne−ne+
, (4.35)

where the density function
√
ne−ne+ in the Boltzmann limit is given by3557

√
ne−ne+ =

ge
2π3

T 3
(me

T

)2
K2(me/T ). (4.36)

In Fig. 43, we show the reaction rates for Møller reaction, Bhabha reaction, and3558

inverse Compton scattering as a function of temperature. For temperatures T >3559

12.0 keV, the dominant reactions in plasma are Møller and Bhabha scatterings be-3560

tween electrons and positrons. Thus in the BBN temperature range, we can neglect3561

the inverse Compton scattering. The total relaxation rate κ (black line) is approx-3562

imately constant, κ = 10 ∼ 12 keV, during the BBN. However, at T < 20.3 keV3563

the relaxation rate κ decreases rapidly because the plasma changes its nature when3564

positrons disappear.3565

Self-consistent damping rate3566

In electron-positron plasma, the photon mass appears as m2
γ in the transition ma-3567

trices for Møller and Bhabha reactions, which is one of important parameters in the3568
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calculation of the relaxation rate in e± plasma. When evaluating Møller and Bhabha3569

scattering, we included as is common practice the temperature-dependent mass of3570

the photon obtained in plasma theory without damping. However, in general, the3571

effective mass of the photon depends at a given temperature on all properties of the3572

QED plasma.3573

Considering the linear response theory, the dispersion relation for the photon in3574

nonrelativistic e± plasma is given by [11]3575

w2 = |k|2 + w

w + iκ
w2

pl, (4.37)

where wpl is the plasma frequency and κ is the average collision rate of e± plasma.3576

The effective plasma frequency in damped plasma can be solved by considering the3577

case |k|2 = 0 [11]3578

w± = −iκ
2
±
√
w2

pl −
κ2

4
. (4.38)

The result shows that the plasma frequency in damped plasma w± is a function of κ3579

which we are computing.3580

However, the effective photon mass in damped plasma is also a function of the3581

scattering rate. We have3582

mγ = w±(wpl, κ) = mγ(wpl, κ), (4.39)

where the photon mass mγ = w+ for the under-damped plasma wpl > κ/2, and3583

mγ = w− for over-damped plasma wpl < κ/2. Eq. (4.39) shows that computed damp-3584

ing strength κ is the dominant scale for collisional plasma and it is also the main3585

parameter determining the photon mass in plasma.3586

Substituting the effective photon mass Eq. (4.39) into the definition of the average3587

relaxation rate Eq. (4.35), we obtain a self-consistent equation for damping rate κ3588

κ

[
ge
2π3

T 3
(me

T

)2
K2(me/T )

]
=
gege
32π4

T

∫ ∞
4m2

e

ds
s(s− 4m2

e)√
s

K1(
√
s/T )× (4.40)[

σe±e±(s, wpl, κ) + σe±e∓(s, wpl, κ)

]
,

where the cross sections depend on the parameter wpl and κ, and the variable κ3589

appears on both sides of the equation so we need solve the equation numerically to3590

determine the κ value that satisfies this condition.3591

Depending on the nature of the plasma (overdamped or underdamped plasma),3592

we can establish the photon mass in collision plasma based on two distinct conditions3593

as follows:3594

– Case 1. The plasma frequency is larger than the collision rate wpl > κ/2, we have3595

mγ = w+ = −iκ
2
+

√
w2

pl −
κ2

4
. (4.41)

– Case 2. The plasma frequency is smaller than the collision rate wpl < κ/2, we3596

have3597

mγ = w− = −i

(
κ

2
+

√
κ2

4
− w2

pl

)
. (4.42)
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Fig. 44. The relaxation rate κ/2 (blue line) and plasma frequency ωpl (red line) as a
function of temperature in nonrelativistic electron-positron plasma. Vertical green dashed
line indicates the boundary between over- and under-damped plasma at T < 145.5 keV
which is before the BBN epoch (vertical black lines). Temperature domain of validity is
above disappearance of positrons (vertical line at 20.3 keV). Adapted from Ref. [5]

In Fig. 44 we see that during the BBN epoch 50 ⩽ T ⩽ 86 keV, the plasma frequency3598

is smaller than the collision rate wpl < κ/2. In this case, the effective photon mass3599

in collision plasma is given by the overdamped relation Eq. (4.42). For temperature3600

T < 20.3 keV, the composition turns into electron and proton plasma, which is beyond3601

our current study because of assumed (for simplicity) equal numbers of electrons and3602

positrons.3603

To calculate the effective cross sections for Møller and Bhabha scattering we need3604

in the overdamped regime to account for the imaginary photon mass in the calculation3605

of reaction matrix elements. This imaginary part of the photon mass accounts for the3606

decay in sense of propagation range of the massive photon in plasma. We now make3607

a first estimate of the effect of self-consistent real part of the photon mass on the3608

damping rate κ, we leave the photon decay to a future study.3609

For BBN temperature 50 ⩽ T ⩽ 86 keV, we have wpl < κ and the effective photon3610

mass can be approximated as3611

m2
γ = w−w

∗
− =

(
κ

2
+

√
κ2

4
− w2

pl

)2

=
κ2

2

(1− 2w2
pl

κ2

)
+

√
1−

4w2
pl

κ2


=
κ2

2

[(
1−

2w2
pl

κ2

)
+

(
1−

2w2
pl

κ2
+ · · ·

)]
≈ κ2. (4.43)

where we consider the limit w2
pl/κ

2 ≪ 1 and effective photon mass is equal to the3612

average collision rate in plasma m2
γ ≈ κ.3613

Substituting the photon mass m2
γ = κ2 for overdamped plasma into the relaxation3614

rate of electron-positron Eq. (4.40), and introducing the following dimensionless vari-3615
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ables3616

x =
√
s/T, a = mγ/T = κ/T, b = me/T, (4.44)

the relaxation rate of electron-positron can be written as3617 [
ge
2π2

T 4
(me

T

)2
K2(me/T )

] ( κ
T

)
=
g2eα

2

8π3
T 4

∫ ∞
2b

dxK1(x) [Fe±e±(x, κ/T ) + Fe±e∓(x, κ/T )] , (4.45)

where the functions Fe±e± and Fe±e∓ are given by3618

Fe±e±(x, a = κ/T ) =

{
2

[
3a2 + 4b2 +

4(b4 − a4)
x2 − 4b2 + 2a2

]
ln

(
a2

x2 − 4b2 + a2

)
+
(x2 − 4b2)(8b4 + 2a4 + 3a2x2 + 2x4 − 4b2(2x2 + a2))

a2(x2 − 4b2 + a2)

}
(4.46)

and3619

Fe±e∓(x, a = κ/T ) =

{
2x2(a2 + x2)− 4b4

x2 − a2
ln

(
a2

x2 − 4b2 + a2

)
+

(x2 − 4b2)(3x2 + 4b2 + 2a2)

(x2 − a2)
+
x6 − 12b4x2 − 16b6

3(x2 − a2)2

+
(x2 − 4b2)(8b4 + 2a4 + 3a2x2 + 2x4 − 4b2(2x2 + a2))

a2(x2 − 4b2 + a2)

}
. (4.47)

We solve Eq. (4.45) numerically. In Fig. 45, we plot the resultant relaxation rate3620

κ that satisfies Eq. (4.45) as a function of temperature 50 keV ⩽ T ⩽ 86 keV. The3621

result shows that in the the BBN temperature range, the overdamping is considerably3622

reduced: We remember that we started with wpl < κ, and the effective photon mass3623

m2
γ = κ2. Now we obtain a relaxation rate κ = 1.832 ∼ 0.350 keV during BBN epoch,3624

which is smaller than the relaxation rate without damping effect on the photon mass,3625

compare Fig. 43, where the relaxation rate κ = 10 ∼ 12 keV during the BBN epoch3626

is shown.3627

This first estimate of self-consistent plasma damping shows high sensitivity demon-3628

strating the need for full self-consistent evaluation of damping rate in plasma within3629

context of a well-defined, self-consistent approach, where both damping and photon3630

properties in plasma are determined in a mutually consistent manner, a project which3631

is well ahead of current state of the art and which is well beyond the scope of this3632

report.3633

Electron-positron plasma screening in BBN3634

At present, the observation of light element (e.g. D, 3He, 4He, and 7Li) abundances3635

produced in Big-Bang nucleosynthesis (BBN) offers a reliable probe of the early Uni-3636

verse before the recombination. Much effort of the BBN study is currently being made3637

to reconcile the discrepancies and tensions between theoretical predictions and obser-3638

vations of light element abundances, e.g. 7Li problem [52]. Current models assume3639

that the Universe was essentially void of anything but reacting light nucleons and3640

electrons needed to keep the local baryon density charge-neutral, a situation similar3641

to the experimental environment where empirical nuclear reaction rates are obtained.3642



132 Will be inserted by the editor

Fig. 45. The relaxation rate κ that satisfies Eq. (4.45) self-consistently as a function of
temperature 50 ⩽ T ⩽ 86 keV. The minor fluctuations are due to limited numerical precision.
Adapted from Ref. [5]

The electron-positron plasma influences light element abundances through elec-3643

tromagnetic screening of the nuclear potential. The electron cloud surrounding the3644

charge of an ion screens other nuclear charges far from its own radius and reduces3645

the Coulomb barrier. In nuclear reactions, the reduction of Coulomb barrier makes3646

the penetration probability easier and enhance the thermonuclear reaction rates. In3647

this case, the modification of the nuclei interaction due to the plasma screening effect3648

may plays a key role in the formation of light element in the BBN.3649

The enhancement factor of thermonuclear reaction rates and screening potential3650

are calculated by Salpeter in 1954 [170], which describes the static screening effects for3651

the thermonuclear reactions. In an isotropic and homogeneous plasma the Coulomb3652

potential of a point-like particle with charge Ze at rest is modified into [170]3653

ϕstat(r) =
Ze

4πϵ0r
e−mDr, (4.48)

wheremD is the Debye mass. After that it has been exploited widely in BBN for static3654

screening [171,172]. Subsequently, the study of dynamical screening for moving ions3655

has been taken into account [173,174,175]. When a test charge moves with a velocity3656

that is enough to react with the background charge in plasma, the Coulomb potential3657

is modified by the dynamical effect. However, the applications focus on the weakly3658

interacting electron-positron plasma only.3659

In this section, we review [8], which applies the nonrelativistic longitudinal po-3660

larization function to study the dynamics of the electron-positron plasma in the3661

early Universe. In particular, we discussed the damping rate, the electron-positron to3662

baryon density ratio, and their potential implications for Big-Bang Nucleosynthesis3663

(BBN) through screening within linear response theory. We derived an approximate3664

analytic formula for the potential of a moving heavy charge in a collisional plasma in3665
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Eq. (4.72) describing screening effects previously found only numerically [175]. Our3666

analytic formula can be readily used to estimate the effect of screening on ther-3667

monuclear reactions using Eq. (6.24). The correction to thermonuclear reactions due3668

to damped-dynamic screening is small due to the low velocity of nuclei and a large3669

amount of collisional scattering. This is in line with the findings of [175], who conclude3670

that even though the densities are large, they are not enough to modify the potential3671

at short distances related to screening. The analytic expression we find for the nuclear3672

reaction rate enhancement Eq. (6.24) in a collisional plasma could be useful in other3673

fusion environments such as stellar fusion and laboratory fusion experiments, such as3674

those discussed in [176,177].3675

Overall we were very surprised to find that the screening effects in BBN were so3676

small even in the static case, considering that the number densities present during3677

BBN are ∼ 104 times normal matter. If we compare this to screening effects on Earth,3678

we can see that although plasmas occur at lower densities, they also occur in much3679

colder environments. The strength of the screening effect is related to the Debye mass3680

m2
D ∼

neq
T

, (4.49)

which is on the order of a few keV during BBN. On earth, neq is decreased by ∼ 104,3681

but T is decreased by ∼ 106. Thus, we would expect to see similar, if not larger,3682

screening effects on Earth. For instance, the Debye screening length in extracellular3683

fluid in the body is 8 Ångstrom [178], only a factor of ∼ 20 times larger than the3684

Debye length during BBN. We can have these large densities at low temperatures on3685

earth due to gravity’s agglomeration of matter in the universe.3686

The short-range screening potential3687

In [8], a proposal is made to study the short-range potential relevant to quantum tun-3688

neling in thermonuclear reactions. Since the Gamow energy at which nuclei are most3689

likely to tunnel is above the thermal energy, the portion of the screening potential rel-3690

evant for tunneling does not satisfy the ”weak-field” limit where the electromagnetic3691

energy is small compared to the thermal energy3692

qϕ(x)

T
≪ 1 . (4.50)

When this condition is not satisfied one must consider the full equilibrium distribution3693

when calculating the short-range potential [179,180]3694

f±B (x, p) = e−(p0±eϕ(x))/T . (4.51)

The eϕ term in the exponential accounts for the change in energy of a charge in the3695

plasma due to its presence in an external field. For this equilibrium distribution, a3696

linear response is no longer possible since the equilibrium distribution depends on3697

the external electromagnetic field. In equilibrium one can find the static screening3698

potential for strong electromagnetic fields using the nonlinear Poisson-Boltzmann3699

equation,3700

−∇2eϕ(eq)(x)/T +m2
D sinh

[
eϕ(eq)(x)/T

]
= eρext(x)/T . (4.52)

This equation has a well-known solution for an infinite sheet which we used to argue3701

the importance of strong screening in BBN. In a future publication, we will solve3702

the Poisson-Boltzmann equation with strong screening to calculate the short-range3703

screening potential in BBN. We note that the toy model in [8] overestimates strong3704

screening effects for two reasons: an infinite sheet has a constant electric field requiring3705
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more polarizing charge density to screen the field, and the Boltzmann distribution3706

in Eq. (4.51) does not account for the stacking of electron-positron states when the3707

density of electrons and positrons becomes very large near the nucleus. Both of these3708

effects significantly reduce the effect of strong screening on reaction rates, but at the3709

time of writing, it seems that strong screening will create a larger effect on nuclear3710

reaction rates than damped-dynamic screening. Predicting enhanced screening may3711

be relevant for the anomalous screening observed in the measurements of astrophysical3712

S(E) factors [181].3713

Early Universe plasma: nonrelativistic polarization tensor3714

The properties of the BBN plasma are described by the relativistic Vlasov-Boltzmann3715

transport equations Eq. (5.24). Since photons do not couple directly to the electro-3716

magnetic field, they do not contribute to the polarization tensor at first order in3717

δf as indicated in Eq. (5.25). We neglect photon influence on the electron-positron3718

distribution through the scattering term since the rate of inverse Compton scatter-3719

ing Re±γ shown in green in Figure (43) is much smaller, in the BBN temperature3720

range, than the total rate κ shown as a black line. Each fermion Boltzmann equation3721

Eq. (5.24) can be solved independently. Since the equations for electrons and positrons3722

are equivalent, except for the charge sign, only one needs to be solved to understand3723

the dynamics.3724

We take the equilibrium one particle distribution function f
(eq)
± of electrons and3725

positrons to be the relativistic Fermi-distribution3726

f
(eq)
± (p) =

1

exp

(√
p2+m2

T

)
+ 1

, (4.53)

with chemical potential µ = 0. The electron and positron mass will be indicated3727

by m unless otherwise stated. At temperatures interesting for nucleosynthesis T =3728

50− 86 keV, we expect the plasma temperature to be much less than the mass of the3729

plasma constituents. Only the nonrelativistic form of Eq. (4.53) will be relevant at3730

these temperature scales3731

f
(eq)
± (p) ≈ exp

(
−m
T

(
1 +

|ppp|2

2m2

))
. (4.54)

Keeping terms up to quadratic order in |p|/m we solve the Vlasov-Boltzmann equation3732

Eq. (5.24) for the induced current and identify the polarization tensor. This is done3733

in detail in our previous work in [11].3734

In the infinite homogeneous plasma filling the early Universe, the polarization3735

tensor only has two independent components: the longitudinal polarization function3736

Π∥ parallel to field wave-vector k in the rest frame of the plasma and the transverse3737

polarization function Π⊥ perpendicular to k [182]. In the nonrelativistic limit, these3738

functions are [11]3739

Π∥(ω,k) = −ω2
p

ω2

(ω + iκ)2
1

1− iκ
ω+iκ

(
1 + T |k|2

m(ω+iκ)2

) , (4.55)

Π⊥(ω) = −ω2
p

ω

ω + iκ
. (4.56)

In these expressions, the plasma frequency ωp (defined as mL in [11]) is related to3740

the Debye screening mass in the nonrelativistic limit as3741

ω2
p = m2

D

T

m
. (4.57)
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Fig. 46. The average distance between baryons n
−1/3
B and the Debye length λD (µe ̸= 0)

as a function of temperature (red solid line). During the BBN epoch (vertical dotted lines)

n
−1/3
B > λD. For temperature below T < 32.76 keV we have n

−1/3
B < λD. For comparison,

the Debye length for zero chemical potential µe = 0 is also plotted as a blue dashed line.
Published in Ref. [8] under the CC BY 4.0 license

The transverse response Π⊥ relates to the dispersion of photons in the plasma.3742

Here we need only consider Π∥ since the vector potential A(t,x) of the traveling ion3743

will be small in the nonrelativistic limit. This work does not consider the effect of a3744

primordial magnetic field discussed in [7] and Sec. 7. We note that Debye mass mD3745

is related to the usual Debye screening length of the field in the plasma as3746

1/λ2D = m2
D = 4πα

(
2mT

π

)3/2
e−m/T

2T
. (4.58)

This formula describes the characteristic length scale of screening in the plasma.3747

Longitudinal dispersion relation3748

As discussed in Chapter 5.1 the poles in the propagator or roots of the dispersion3749

equation represent the plasma’s propagating modes, often called ‘quasi-particles’ or3750

‘plasmons.’ In the nonrelativistic limit, one can solve the longitudinal part of the3751

dispersion equation Eq. (5.84), which is relevant for finding charge oscillation modes3752

in the plasma3753

1 +
Π∥(k)

(p · u)2
= 1 +

Π∥(ω,k)

ω2
= ε∥(ω,k) = 0 , (4.59)

evaluated in the rest frame. Then we insert Eq. (4.55) to find3754

1−
ω2
p

(ω + iκ)2
1

1− iκ
ω+iκ

(
1 + T |k|2

m(ω+iκ)2

) = 0 . (4.60)

https://creativecommons.org/licenses/by/4.0/


136 Will be inserted by the editor

We can simplify the above expression since this is only a function of ω′ = ω + iκ3755

1−
ω2
p

ω′2 − iκω′ + iκT |k|2
mω′

= 0 . (4.61)

Then we get a cubic equation for ω′(|k|)3756

1

ω′3 − iκω′2 + iκT |k|2
m

(
ω′3 − iκω′2 − ω2

pω
′ +

iκT |k|2

m

)
= 0 . (4.62)

Cardano’s formula gives the solutions to this cubic equation3757

ωn(k) =
1

3

(
iκ− ξnC − ∆0

ξnC

)
, n ∈ {0, 1, 2} , (4.63)

with the quantities:3758

ξ =
i
√
3− 1

2
, (4.64)

C =
3

√
∆1 ±

√
∆2

1 − 4∆3
0

2
, (4.65)

∆0 = −κ2 + 3ω2
p , (4.66)

∆1 = 2iκ3 − 9iκω2
p + 27

iκT |k|2

m
. (4.67)

Since the longitudinal dispersion relation is analytically solvable the full nonrelativis-3759

tic potential can be found in position space using contour integration. The residue3760

of each pole will lead to the strength of that mode, and the location of the pole will3761

lead to space and time dependence, which in simple cases is exponential. In practice,3762

factoring out these roots in the Fourier transform of the potential leads to five poles,3763

which do not seem to lead to simple expressions in position space. We found using3764

the approximate expression derived in Eq. (6.3) was more practical. Deriving the full3765

expression is the subject of future work.3766

Damped-dynamic screening3767

We discuss the application of the nonrelativistic limit of the polarization tensor3768

Sec. 5.1 to the electron-positron plasma which existed during Big-Bang nucleosynthe-3769

sis (BBN) [8]. The BBN Epoch occurred within the first 20 min after the Big-Bang3770

when the Universe was hot and dense enough for nuclear reactions to produce light3771

elements up to lithium [52].3772

The BBN nuclear reactions typically take place within the temperature interval3773

86 keV > TBBN > 50 keV [52]. We refer to these elements produced in BBN as pri-3774

mordial light elements to distinguish them from those made later in the Universe’s3775

history. Primordial light element abundances are the most accessible probes of the3776

early Universe before recombination. Though the current BBN model successfully3777

predicts D, 3He, 4He abundances, well-documented discrepancies, such as 7Li, re-3778

main. Efforts to resolve the theoretical BBN model with present-day observations are3779

discussed in detail in [183,184].3780

A rather large electron-positron e−e+- number densities existed in the early Uni-3781

verse during Big-Bang nucleosynthesis (BBN) [166,175,1] are 102 times larger than3782
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those present in the Sun [185] and 104 times normal atomic densities [8]. Charge3783

screening is an essential collective plasma effect that modifies the inter-nuclear po-3784

tential ϕ(r) changing thermonuclear reaction rates during BBN. An electron cloud3785

around an ion’s charge effectively diminishes the influence of nuclear charges beyond3786

their immediate vicinity, lowering the Coulomb barrier.3787

In the context of nuclear reactions, a reduced Coulomb barrier leads to a higher3788

likelihood of penetration, boosting thermonuclear reaction rates. Consequently, this3789

process influences the abundance of light elements in the early universe by modifying3790

their formation rates. Since the BBN temperature range is much less than the electron3791

mass, we will use the nonrelativistic limit of the polarization tensor derived in Chapter3792

5.1. The screened potential relevant for thermonuclear reactions will be given by the3793

longitudinal polarization function Eq. (5.75).3794

The influence of screening on nuclear reactions is a well-established field of study.3795

The concept of plasma screening effects on nuclear reactions was initially introduced3796

in [170], who suggested determining the increase in nuclear reaction rates through the3797

use of the static Debye-Hückel potential [186,187,172]. Subsequent research expanded3798

this framework to account for the thermal velocity of nuclei traversing the plasma [175,3799

188,174,189,190], introducing the concept of ‘dynamic’ screening.3800

In our current study, we address the high density of the e−e+γ plasma by in-3801

cluding collisional damping using the current conserving collision term developed in3802

[11] shown in Eq. (5.19). The dense aspect of the BBN plasma has only recently been3803

acknowledged by incorporating collision effects into numerical models [191,192]. We3804

will refer to this model of screening as ’damped-dynamic’ screening. In [8], we find3805

an analytic formula for the induced screening potential, which allows for estimating3806

the enhancement of thermonuclear reaction rates.3807

Nuclear potential3808

We consider the effective nuclear potential for a light nucleus moving in the plasma3809

at a constant velocity. This is done by Fourier transforming Eq. (6.20). The velocity3810

of the nucleus is assumed to be the most probable velocity given by a Boltzmann3811

distribution3812

βN =

√
2T

mN
. (4.68)

Since the poles of the Eq. (6.18) can be solved analytically, ideally, one would perform3813

contour integration to get the position space field. Due to the intricacy of these poles3814

ωn(k), we find it insightful to look at the field in a series expansion around velocities3815

of the light nuclei smaller than the thermal velocity of electrons and positrons and3816

large damping.3817

(k · βN)
2

ω2
p

≪ k2

m2
D

≪ κ2

ω2
p

. (4.69)

This expansion is useful during BBN since the temperature is much lower than3818

the mass of light nuclei and the damping rate κ is approximately twice the Debye3819

mass mD, as seen in Fig. 43. Applying this expansion to Eq. (6.20) and evaluating3820

this expression for a point charge r → 0 we find3821

ϕ(t,x) = ϕstat(t,x)− Ze
∫

d3k

(2π)3
eik·(x−βNt)

ik · βNm
4
D( k2

m2
D
− κ2

ω2
p
)

k2(k2 +m2
D)2κ

. (4.70)

The second term is the damped-dynamic screening correction, which we refer to as3822

∆ϕ, where3823

ϕ(t,x) = ϕstat(t,x) +∆ϕ(t,x) , (4.71)
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Fig. 47. Plot of the total screening potential scaled with charge Z and distance along the
direction of motion. We show a comparison of the following screening models plotted along
the direction of motion of a nucleus r · β̂N: static screening (black), dynamic screening (red
dotted) from [175], damped-dynamic screening (blue dashed), and the approximate analytic
solution of Eq. (4.71) (orange dashed). A black arrow indicates the direction of motion of

the nucleus β̂N. Published in Ref. [8] under the CC BY 4.0 license

and ϕstat is the standard static screening potential. The details of the integration of3824

Eq. (4.70) can be found in [8], the result is3825

∆ϕ(t,x) =
ZeβN cos(ψ)m2

D

4πε0κ

[(
ν2τ

m2
Dr(t)

2
+

ν2τ
mDr(t)

+
1 + ν2τ

2

)
e−mDr(t)

− ν2τ
m2

Dr(t)
2

]
, (4.72)

where ψ is the angle between x − βN t and βN and r(t) = |x − βN t|. We introduce3826

the ratio of the damping rate to the rate of oscillations in the plasma ντ = κ/ωp. This3827

expression is valid for large damping and slow motion of the nucleus or if the velocity3828

of the nuclei is small. A similar result valid at large distances, which only includes3829

the last term, was previously derived in [193] for dusty (complex) plasmas. For large3830

distances and large ντ , the last term in the second line is dominant, indicating that3831

the overall potential would be over-damped. In this regime, the potential is heavily3832

screened in the forward direction and unscreened in the backward direction relative3833

to the motion of the nucleus. As ντ becomes small, the 1/2 in the first portion of3834

the third term, proportional to m2
D/κ, dominates. This flips the sign of the damped-3835

dynamic screening contribution causing a wake potential to form behind the nuclei.3836

This shift indicates the change from damped to undamped screening where Eq. (4.72)3837

is no longer valid.3838

https://creativecommons.org/licenses/by/4.0/
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Fig. 48. Two dimensional plot of the total potential Eq. (4.71) scaled with Z, at T = 74 keV.
The potential is cylindrically symmetric about the direction of motion ẑ, which is indicated
by a black arrow. The direction transverse to the motion is ρ. The sign of the damped-
dynamic correction Eq. (4.72) changes sign due to the cosine term. Adapted from Ref. [3]

Figure 47 demonstrates that the damped-dynamic response in the analytic ap-3839

proximation Eq. (4.72) (shown as orange dashed line) is sufficient to approximate the3840

full numerical solution (blue dashed line) found by numerical integration of Eq. (6.18).3841

The temperature T = 100 keV, above our upper limit of BBN temperatures, is cho-3842

sen to relate to the dynamic screening result found in [175]. Our analytic solution3843

differs from the numerical result in Fig. 4 of [175] by a factor of
√
2 and is horizon-3844

tally flipped. This reflection is due to a difference in convention in the permittivity,3845

as seen in Eq. (6.20). We can see that dynamic screening is slightly stronger at large3846

distances than damped screening, as expected. Damped and undamped screening are3847

very similar at short distances, which is relevant to thermonuclear reaction rates.3848

Dynamic screening in both the damped and undamped cases predicts less screen-3849

ing behind and more in front of the moving nucleus than static screening. This is3850

shown in the two-dimensional plot Figure (48), of the total potential in plasma at3851

T = 76 keV This effect was previously observed for subsonic screening in electron-3852

ion-dust plasmas [193,194,195]. As a result, a negative polarization charge builds3853

up in front of the nucleus. The small negative potential in front alters the potential3854

energy between light nuclei, possibly changing the equilibrium distribution of light3855

elements in the early universe plasma. This effect is much larger in the undamped3856

case and is known in some cases to lead to the formation of dust crystals [196].3857
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4.3 Temperature Dependence of the Neutron Lifespan3858

Understanding Neutrons3859

Element production during BBN is influenced by several parameters, e.g. baryon3860

to photon ratio ηb, number of neutrino species Nν , and neutron to proton ratio3861

Xn/Xp, as controlled by both the dynamics of neutron freeze-out at temperature3862

Tf ≈ 0.8MeV and neutron lifetime.3863

Since about 200 seconds pass between neutron freeze-out, and midst of BBN3864

neutron burn at T ≈ 0.07MeV, the in plasma neutron lifetime is one of the impor-3865

tant parameter controlling BBN element yields [52]. However, the neutron population3866

dynamics and decay within the cosmic plasma medium with large abundances of neu-3867

trinos and e+e−-pairs is not the same as in effective vacuum laboratory environment.3868

The medium influence on particle decay was discussed for example by Kuznetsova et3869

al [28], we will further develop and use this method in order to explore how cosmic3870

primordial plasma influences neutron population dynamics.3871

After freeze-out when weak interaction scattering processes slow down to allow3872

neutron abundance to free-stream, neutron abundance remains subject to natural3873

decay3874

n −→ p+ e+ νe . (4.73)

The current experimental neutron lifetime remains method dependent, with a few sec-3875

ond discrepancy, we adopt here the value τ0n = 880.2±1.0 sec. However measurements3876

using magneto-gravitational traps unlike beam experiments offer a bit shorter value,3877

877.7 ± 0.7 sec [197]. In the standard Big-Bang nucleosynthesis (BBN) the neutron3878

abundance when nucleosynthesis begins is assumed to be [52]3879

Xn(TBBN ) = Xf
n exp

(
− tBBN − tf

τ0n

)
≈ 0.13 , (4.74)

The normalizing neutron freeze-out yield Xf
n3880

Xf
n ≡

nfn

nfn + nfp
=

nfn/n
f
p

1 + nfn/n
f
p

. (4.75)

where nfn and nfp are freeze-out neutron and proton densities, respectively. The ther-3881

mal equilibrium yield ratio is3882

nfn

nfp
= exp (−Q/Tf ) , Q = mn −mp , (4.76)

assuming a instantaneous freeze-out, depends on temperature Tf at which neutrons3883

decouple from the heat bath, and the neutron-proton mass difference (in medium).3884

The values considered are in the range Xf
n = 0.15 ∼ 0.17 [52]. A dynamical approach3885

to neutron freeze-out is necessary to fully understand Xf
n , we hope to return to this3886

challenge in the near future.3887

Following freeze-out the neutron is subject to natural decay and normally the neu-3888

tron lifetime in vacuum τ0n is used c.f. Eq. (4.74) to calculate the neutron abundance3889

resulting in the ‘desired’ value Xn(TBBN ) ≈ 0.13 when BBN starts. To improve pre-3890

cision a dynamically evolving neutron yield needs to be studied and for this purpose3891

we explore here the neutron decay which occurs in medium, not vacuum. This leads3892

to neutron lifespan dependence on temperature of the cosmic medium as the decay3893

occurs for a particle emerged in plasma of electron/positron, neutrino/antineutrino,3894

(and protons).3895

Two physical effects of the medium influence the neutron lifetime in the early3896

universe noticeably:3897
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– Fermi suppression factors from the medium: During the temperature range Tf ⩾3898

T ⩾ TBBN , electrons and neutrinos in the background plasma can reduce the3899

neutron decay rate by Fermi suppression to the neutron decay rate. Furthermore,3900

the neutrino background can still provide the suppression after electron/positron3901

pair annihilation becomes nearly complete.3902

– Photon reheating: When T ≪ me the electron/positron annihilation occurs, the3903

entropy from e± is fed into photons, leading to photon reheating. The already de-3904

coupled (frozen-out) neutrinos remain undisturbed. Therefore, after annihilation3905

we have two different temperatures in cosmic plasma: neutrino temperature Tν3906

and the photon and proton temperature T respectively.3907

These two effect will be included in the following exploration of the neutron lifetime3908

in the early universe as a function of T . We show how these effects alter the neutron3909

lifespan and obtain the modification of the neutron yield at the time of BBN. Yet3910

another effect was considered by Kuznetsova et al [28] which is due to time dilation3911

originating in particle thermal motion. In our case for neutrons with T/m < 10−3 this3912

effect is negligible. Below we will explicitly assume that the neutron decay is studied3913

in the neutron rest frame.3914

Decay Rate in Medium3915

3916

The invariant matrix element for the neutron decay Eq. (4.73) for nonrelativistic3917

neutron and proton is given by3918

⟨|M|2⟩ ≈ 16G2
FV

2
udmnmp(1 + 3g2A)(1 +RC)Eν̄Ee, (4.77)

where the Fermi constant is GF = 1.1663787 × 10−5 GeV−2, Vud = 0.97420 is an3919

element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [198,199,85], and gA =3920

1.2755 is the axial current constant for the nucleons [198,200]. We also consider the3921

total effect of all radiative corrections relative to muon decay that have not been3922

absorbed into Fermi constant GF . The most precise calculation of this correction [200,3923

199] gives (1 +RC) = 1.03886.3924

In the early universe the neutron decay rate in medium, at finite temperature can3925

be written as [28]3926

1

τ ′n
=

1

2mn

∫
d3pν̄

(2π)32Eν̄

d3pp
(2π)32Ep

d3pe
(2π)32Ee

(2π)4δ4 (pn − pp − pe − pν̄) ⟨|M|2⟩[
1− fp(pp)

][
1− fe(pe)

][
1− fν̄(pν̄)

]
, (4.78)

where we consider this expression in the rest rest frame of neutron, i.e. pn = (mn, 0).3927

The phase-space factors (1 − fi) are Fermi suppression factors in the medium. The3928

Fermi-Dirac distributions for electron and nonrelativistic proton are given by3929

fe =
1

eEe/T + 1
, (4.79)

fp = e−Ep/T = e−mp/T e−p
2
p/2mpT . (4.80)

For neutrinos, after neutrino/antineutrino kinetic freeze-out they become free stream-3930

ing particles. If we assume that kinetic freeze out occurs at some time tk and tem-3931

perature Tk, then for t > tk the free streaming distribution function can be written3932

as [26]3933

fν̄ =
1

exp
(√

E2−m2
ν

T 2
ν

+
m2

ν

T 2
k
+ µν̄

Tk

)
+ 1

, (4.81)
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for antineutrinos and we define the effective neutrino temperature Tν as3934

Tν ≡
a(tk)

a(t)
Tk. (4.82)

In the following calculation, we assume the condition Tk ≫ µν̄ , mν , i.e. we consider3935

the massless neutrino in plasma. Substituting the distributions into the decay rate3936

formula and using the neutron rest frame, the decay rate can be written as3937

1

τ ′n
=
G2

FQ
5V 2

ud

2π3
(1 + 3g2A) (1 +RC) (4.83)

×
∫ 1

me/Q

dξ
ξ(1− ξ)2

exp (−Qξ/T ) + 1

√
ξ2 − (me/Q)2

exp (−Q(1− ξ)/Tν) + 1
,

where Q was defined in Eq. (4.76) and we integrate using dimensionless variable3938

ξ = Ee/Q. From Eq.(4.83), the decay rate in vacuum can be written as3939

1

τ0n
=
G2

Fm
5
eV

2
ud

2π3
(1 + 3g2A) (1 +RC) f ′, (4.84)

where the phase space factor f ′ is given by3940

f ′ ≡
(
Q

me

)5 ∫ 1

me/Q

dξ ξ(1− ξ)2
√
ξ2 − (me/Q)2 = 1.6360 . (4.85)

The phase space factor is also modified by the Coulomb correction between elec-3941

tron and proton, proton recoil, nucleon size correction etc. This has been studied by3942

Wilkinson [201], and the phase space factor is given by [198,85,201]3943

f = 1.6887. (4.86)

These effect amount to adding the factor F to our calculation3944

F =
f

f ′
= 1.0322, (4.87)

then the neutron lifespan can be written as3945

τVacuum
n =

τ0n
F

= 879.481 sec, (4.88)

which compare well to the experiment result 877.7± 0.7 sec [197].3946

In the case of plasma medium, we do not expect that these effect (Coulomb cor-3947

rection between electron and proton, proton recoil, nucleon size correction etc) are3948

modified in the cosmic plasma. Thus we adapt the factor into our calculation and the3949

neutron decay rate in the cosmic plasma is given by3950

1

τMedium
n

=
G2

FQ
5V 2

ud

2π3
(1 + 3g2A) (1 +RC)F (4.89)

×
∫ 1

me/Q

dξ
ξ(1− ξ)2

exp (−Qξ/T ) + 1

√
ξ2 − (me/Q)2

exp (−Q(1− ξ)/Tν) + 1
.

From Eq.(4.89) we see that the neuron decay rate in the early universe depends on3951

both the photon temperature T and the neutrino effective temperature Tν .3952
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Photon Reheating3953

After neutrino free-out and when me ≫ T , the e± becomes nonrelativistic and an-3954

nihilate. In this case, their entropy is transferred to the other relativistic particles3955

still present in the cosmic plasma, i.e. photons, resulting in an increase in photon3956

temperature as compared to the free-streaming neutrinos. From entropy conservation3957

we have3958

2π

45
gs∗(Tk)T

3
kVk + Sν(Tk) =

2π

45
gs∗(T )T

3V + Sν(T ), (4.90)

where we use the subscripts k to denote quantities for neutrino freeze-out and gs∗3959

counts the degree of freedom for relativistic species in early universe. After neutrino3960

freeze-out, their entropy is conserved independently and the temperature can be writ-3961

ten as3962

Tν ≡
a(tk)

a(t)
Tk =

(
Vk
V

)1/3

Tk. (4.91)

In this case, from entropy conservation, Eq.(4.90), we obtain3963

Tν =
T

κ
, κ ≡

[
gs∗(Tk)

gs∗(T )

]1/3
. (4.92)

From Eq.(4.92) the neutron decay rate in a heat bath can be written as3964

1

τMedium
n

=
G2

FQ
5V 2

ud

2π3
(1 + 3g2A) (1 +RC)F (4.93)

×
∫ 1

me/Q

dξ
ξ(1− ξ)2

exp (−Qξ/T ) + 1

√
ξ2 − (me/Q)2

exp (−Q(1− ξ)κ/T ) + 1
.

In the high temperature regime, T ≫ Q, the exponential terms in the Fermi3965

distribution becomes 1 and the decay rate is given by3966

1

τMedium
n

=
1

4

(
1

τVacuum
n

)
, T ≫ Q . (4.94)

In Fig. 49, we plot the the neutron lifetime τMedium
n in plasma as a function of tem-3967

perature. Fermi-suppression from electron and neutrino increases the neutron lifetime3968

as compared to value in vacuum. At low temperature, T < me, most of the electrons3969

and positrons have annihilated and the main Fermi-blocking comes from the cosmic3970

neutrino background. In this regime, the neutron lifetime depends also on the neu-3971

trino temperature, Tν . For cold neutrinos Tν < T , the Fermi suppression is smaller3972

than the hot one Tν = T .3973

Neutron Abundance3974

After the neutron freeze-out, the neutron abundance is only affected by the neutron3975

decay. The neutron concentration can be written as3976

Xn = Xf
n exp

[
−
∫ t

tf

dt′

τn

]
, (4.95)
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Fig. 49. The neutron lifetime τMedium
n in the cosmic plasma as a function of temperature. At

high temperature T = 100MeV the neutron lifetime is 3495 sec which is 3.974 times larger
than the lifetime in vacuum. At low temperature, T < me, the neutron lifetime depends also
on the neutrino temperature, Tν , the effect is amplified in the insert Published in Ref. [16]
under the CC BY 4.0 license

where we use the subscripts f to denote quantities at neutron freeze-out. Using3977

Eq.(4.93) and Eq.(4.95), the neutron abundance ratio between plasma medium and3978

vacuum is given by3979

XMeduim
n

XVacuum
n

= exp

[
−
∫ t

tf

dt′
(

1

τ ′n
− 1

τ0n

)]
. (4.96)

In Fig. 50, we plot the neutron abundance ratio as a function of temperature. Con-3980

sider the neutron freeze-out temperature Tf = 0.08MeV and the BBN temperature3981

TBBN ≈ 0.07MeV, we found that the ratio XMeduim
n /XVacuum

n = 1.064 at tempera-3982

ture TBBN . Then from Eq.(4.74) the neutron abundance in plasma medium is given3983

by3984

XMeduim
n = 1.064XVacuum

n ≈ 0.138. (4.97)

In this case, the neutron abundance will increase about 6.4% in the cosmic plasma3985

which should affect the final abundances of the Helium-4 and other light elements in3986

BBN.3987

How is BBN impacted?3988

One of the important parameters of standard BBN is the neutron lifetime, as it3989

affects the neutron abundance after neutron freeze-out at temperature Tf ≈ 0.8MeV3990

and before the BBN T ≈ 0.07MeV.3991

In the standard BBN model, it is necessary to have a neutron-to-proton ratio3992

n/p ≈ 1/7 when BBN begins in order to explain the observed values of hydrogen3993

https://creativecommons.org/licenses/by/4.0/


Will be inserted by the editor 145

Fig. 50. The neutron abundance ratio as a function of temperature. Considering the neutron
freeze-out temperature Tf = 0.08MeV and the BBN temperature TBBN ≈ 0.07MeV, we find
the abundance ratio XMeduim

n /Xvacuum
n = 1.064 at temperature TBBN . Published in Ref. [16]

under the CC BY 4.0 license

and helium abundance [52]. We have evaluated the effect of Fermi suppression on3994

the neutron lifetime due to the background electron and neutrino plasma. We found3995

that in medium the neutron lifetime is lengthened by up to a factor 4 at a high3996

temperature (T > 10MeV). Our method should in principle also be considered in the3997

study of medium modification of just about any of the BBN weak interaction rates,3998

this remains a task for another day.3999

In the temperature range between neutron freeze-out just below T = 1 MeV and4000

BBN conditions the effect of neutron lifespan is smaller but still noticeable. Near4001

neutron freeze-out both decay electron and neutrino are blocked. However, after e±4002

annihilation is nearly complete closer to BBN Fermi-blocking comes predominantly4003

from the cosmic neutrino background and the neutron lifetime depends on the tem-4004

perature Tν < T .4005

We found that the increased neutron lifetime results in an increased neutron abun-4006

dance of XMeduim
n /Xvacuum

n = 1.064 at TBBN ≈ 0.07MeV i.e. we find a 6.4% increase4007

in neutron abundance due to the medium effect at the time of BBN. We believe4008

that this effect needs to be accounted for in the precision BBN study of the final4009

abundances of hydrogen, helium and other light elements produced in BBN.4010

5 Plasma physics methods applied to Strong Fields and BBN4011

5.1 Plasma response to electromagnetic fields4012

The interaction of electromagnetic fields within relativistic plasmas is of interest in4013

astrophysics, intense laser interactions with matter, and quark-gluon plasma in rela-4014

tivistic heavy-ion collisions. Quark-gluon plasma (QGP), a state of matter of decon-4015

https://creativecommons.org/licenses/by/4.0/
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fined quarks and gluons at extremely high temperatures T > 150 MeV, is formed in4016

the violent collision of heavy-ions at relativistic speeds. This deconfined state is also4017

of astrophysical interest since it filled the early universe for the first few microsec-4018

onds after the Big-Bang. Several methods have been introduced to study the linear4019

response of a collisionless ultrarelativistic QGP following the seminal work by [202]4020

by using semiclassical transport theory based on the Boltzmann equation [203,204,4021

205,206,207]. However, applications of this formalism are restricted to dilute plasmas4022

where collisions can be neglected [208]. Previously, the effects of collisions within the4023

plasma were mainly studied to derive transport coefficients, such as the electrical4024

conductivity, of interest to the study of plasma response to long-wavelength pertur-4025

bations [209,210,211,212,213]. In quantum field theory, transport coefficients have4026

also been calculated using effective propagators that re-sum thermal modifications to4027

avoid infrared divergences [214,215,216]. Here, we will study semi-classical transport4028

using the Vlasov-Boltzmann equation with momentum-averaged quantum collisions4029

between particles, a topic discussed in numerous other works, such as [180,217,218,4030

219,220].4031

The theoretical description of relativistic plasma is based on transport theory, i.e.,4032

the relativistic form of Liouville’s equation. The one-particle phases space distribution4033

function f(x, p) undergoes Liouville flow,4034

df(x, p)

dτ
= {H(x, p), f(x, p)} = 0 , (5.1)

where p is the canonical four-momentum, and x is the canonical position. The collision4035

term C[f ] represents elastic/inelastic interactions and gives deviations away from4036

Liouville’s theorem4037

df(x, p)

dτ
= C[f ] , (5.2)

or equivalently, entropy generation. The collision term is necessary to describe sys-4038

tems where the mean free path of plasma constituents is less than or equal to the4039

characteristic length scale of the plasma or when the mean free time τ is smaller than4040

the characteristic oscillation time of the plasma. This pertains to systems with high4041

density, low temperature, or strongly coupled systems.4042

The Boltzmann-Einstein equation, see Section 3.2, with a realistic collision oper-4043

ator, i.e., modeling scattering among neutrinos and e±, was used in Section 3.4 to4044

study the cosmological neutrino freeze-out. However, in many cases a detailed treat-4045

ment of the microscopic collision term Eq. (5.17) is computationally prohibitive. In4046

this section our focus is on the interaction of electromagnetic fields within relativistic4047

plasmas and so in place of the microscopic collision term we employ the relaxation-4048

time approximation (RTA) technique, as proposed by [48]. RTA is a commonly made4049

simplification to the Boltzmann equation, reducing it from an integrodifferential equa-4050

tion to a differential equation. The relativistic form of this collision term takes the4051

form4052

C[f ] = (pµuµ)κ[feq(p)− f(x, p)] , (5.3)

where κ = 1/τ is the relaxation rate, f(x, p) is the phase space distribution of charged4053

particles in the plasma, feq(p) is their equilibrium distribution, and uµ is the 4-velocity4054

of the plasma rest frame.4055

The RTA collision term assumes the nonequilibrium distribution f returns to the4056

equilibrium distribution in some characteristic time τ , which is evident when writing4057

Eq. (5.2) in the form4058

df(x, p)

dt
=
feq(p)− f(x, p)

τ
. (5.4)
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The relaxation time τ can be computed using the schematic relaxation time approx-4059

imation where an average relaxation time is introduced [209,221] or by calculating4060

the momentum-dependent relaxation rate κ(p) with the input of perturbative matrix4061

elements [211]. We use the average relaxation time approximation with momentum4062

averaged κ to make all calculations analytically tractable.4063

The well-known disadvantage of the RTA is that it forces all quantities, even4064

conserved ones, to return to their equilibrium value at a rate τ . This can cause the4065

dynamics derived from this collision term to violate current and energy-momentum4066

conservation. The violation of energy conservation is similar to introducing frictional4067

damping into one particle Newtonian dynamics where energy is lost to the environ-4068

ment.4069

Correcting for current and energy-momentum conservation is possible by adding4070

terms that ensure that conserved quantities are unaffected [222,223,224,225]. It is4071

worth noting that this breaking of conservation law does not always affect the physical4072

behavior of the plasma. For instance, the behavior of transverse waves in an infinite4073

homogeneous plasma is unaffected by the addition of current conservation [11].4074

In this work, we generalize the BGK modification of the linearized collision term to4075

relativistic plasmas using the Anderson-Witting form Eq. (5.3), ensuring current con-4076

servation Eq. (5.19) but not energy-momentum conservation. In [11] we show that the4077

resulting linear response functions satisfy current conservation and gauge invariance4078

constraints.4079

The preceding sections will discuss obtaining exact solutions for the covariant po-4080

larization tensor in linear response limit via Fourier transform with the BGK collision4081

term Eq. (5.19). We will present the plasma’s electromagnetic properties by using the4082

polarization tensor to derive the electromagnetic fields.4083

Covariant kinetic theory4084

A full microscopic picture of plasma kinematics, useful in numerical simulations, is4085

often more involved than what is required to understand changes in the macroscopic4086

quantities of plasmas. A conventional simplification to the microscopic picture is to4087

average over the discrete states to yield a distribution function f(x,p), which describes4088

the probability of finding some number of particles dN in a small range of position4089

dr3 and momentum dp3 or relativistically [218]4090 ∫
Σ

dΣµ

∫
d4p

pµ

m
f(x, p) = N, (5.5)

where dΣµ is the surface element on Σ4091

dΣµ =
1

3!
ϵµναβdx

ν × dxα × dxβ (5.6)

with the covariant integration, measure can be written as4092

d4p

(2π)4
4πδ+(p

2 −m2) =
d3p

(2π)3p0

∣∣∣∣
p0=
√
|p|2+m2

, (5.7)

where p0 = p · u in the rest frame of the plasma; see Appendix A for a detailed4093

discussion of the relativistic volume element. The one particle distribution function4094

is effectively the phase space density of the system. We will always refer to the 4-4095

momentum as p = (p0, p) and the 3-momentum as p.4096

The kinetic equation describing the evolution of this distribution is the Vlasov-4097

Boltzmann equation (VBE). The VBE is often derived in detail from heuristic ar-4098

guments see [180,217]. Here, we will outline how it relates to Liouville’s theorem. A4099
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similar derivation of the equilibrium distribution in the presence of electromagnetic4100

fields is found in [218]. We derive the classical one-species Vlasov-Boltzmann equation4101

from the Liouville theorem4102

df(Q,P )

dτ
= {H(Q,P ), f(Q,P )} = 0 , (5.8)

where Pµ and Qµ are the canonical coordinates. This theorem states that the canon-4103

ical phase space density is conserved or the one particle phase space density f(Q,P )4104

satisfies the above continuity equation. The Poisson bracket is explicitly written as4105

df(Q,P )

dτ
=
∂Qµ

∂τ
∂µf(Q,P ) +

∂Pµ

∂τ

∂f(Q,P )

∂Pµ
. (5.9)

Since we consider these particles in the presence of electromagnetic fields, we use the4106

relativistic EM Hamiltonian in the Bergmann form4107

H(Q,P ) =
√
(P − qA(Q))µ(P − qA(Q))µ , (5.10)

which contracts the kinetic momentum to give the relativistic energy of a particle in4108

an electromagnetic field. The equations of motion are4109

∂Qµ

∂τ
=
∂H(Q,P )

∂Pµ
=

(P − qA(Q))µ

H(Q,P )
, (5.11)

−∂P
µ

∂τ
=
∂H(Q,P )

∂Qµ
= − (P − qA(Q))νq∂µAν(Q)

H(Q,P )
. (5.12)

If a canonical transformation is applied to our coordinates, the Liouville theorem4110

states that the phase space density remains unchanged. The transformation we would4111

like to consider is the transition from kinetic to canonical coordinates where Qµ → xµ4112

and P ν → P ν − qAν(x). This new momentum is related to the actual velocity of the4113

particle P ν − qAν(x) = pµ = mdxµ

dτ . We then consider the Liouville theorem for the4114

shifted function,4115

dxµ

dτ
∂µf(x, P − qA(x)) +

d(P − qA(x))µ

dτ

∂f(x, P − qA(x))
∂(P − qA(x))µ

. (5.13)

Then, we use the equations of motion to write4116

(P − qA(x))µ

H(x, P )
∂µf(x, P − qA(x)) + q

(P − qA(x))ν
H(x, P )

Fµν(x)
∂f(x, P − qA(x))
∂(P − qA(x))µ

. (5.14)

Where the electromagnetic tensor is Fµν = ∂µAν − ∂νAµ. Since the canonical mo-4117

mentum is related to the kinetic momentum by Pµ = mdxµ

dτ + qAµ(x), we rewrite4118

the Liouville flow in terms of kinetic momentum pµ = mdxµ

dτ . Applying Liouville’s4119

theorem allows us to set the whole expression to zero to recover the collisionless4120

Vlasov-Boltzmann equation4121

pµ∂µf(x, p) + qpνF
µν(x)

∂f(x, p)

∂pµ
= 0 (5.15)

where pµ = mdxµ

dτ . The collision term is then added to allow for deviations from4122

constant phase space density flow4123

(pk · ∂)fk(x, pk) + qkF
µνpkν

∂fk(x, pk)

∂pµk
=
∑
l

(pk · u)Ckl(x, pk) , (5.16)
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where there are k equations for each particle species and a l sum over all possible4124

collisions with particle k. Usually, we drop the subscript k on momentum if there4125

is no ambiguity. The first term describes the flow or diffusion of particles in the4126

medium, the second term generates an electromagnetic force on particles, and the4127

collision term is on the right-hand side. Generally, each plasma constituent will have a4128

Boltzmann equation and collisions between each species. The collision term represents4129

the detailed microscopic scattering between the plasma constituents. The collision4130

term for the reaction k + l→ i+ j is defined as4131

Ckl(x, pk) =
1

2

N∑
i=1

N∑
j=1

∫
d3pl

(2π)3p0l

d3pi
(2π)3p0i

d3pj
(2π)3p0j

[fifj − fkfl]Wkl|ij , (5.17)

where k, l = 1, 2, ..., N and Wij|kl is the transition rate for the respective collision. It4132

is important to note that in this framework for a plasma forced by external fields,4133

the collision term is the only way a particle species can impact the dynamics of the4134

phase space distribution of another species.4135

The BGK collision term4136

As discussed previously the integral in Eq. (5.17) vastly complicates solving the Vlasov-4137

Boltzmann equation . Instead, we will use a simplified collision term that returns the4138

distribution f(x, p) to equilibrium at some characteristic rate κ = 1/τ , reducing4139

Eq. (5.16) from an integro-differential equation to a differential equation. The relax-4140

ation rate or damping rate κ is the sum of all possible collisions [226]4141

κk(p) =

N∑
i=1

N∑
j=1

N∑
l=1

1

2

∫
d3pl

(2π)3p0l

d3pi
(2π)3p0i

d3pj
(2π)3p0j

f eql Wkl|ij (5.18)

In [11] we utilize the simplified collision term proposed by Ref. [222] (BGK), which4142

is amended to conserve the current4143

C(x, p) = κ

(
feq(p)

n(x)

neq
− f(x, p)

)
, (5.19)

The nonequilibrium and equilibrium densities are defined covariantly as4144

n(x) ≡ 2

∫
d3p

(2π)3p0
(p · u)f(x, p) , (5.20)

neq ≡ 2

∫
d3p

(2π)3p0
(p · u)feq(p) . (5.21)

The factor of two accounts for the spin degrees of freedom. This correction is also4145

proposed in [224] where they treat the collision term as an operator adding countert-4146

erms to ensure that when acting on conserved quantities like energy, momentum, and4147

particle number, the modified collision operator yields zero, thereby respecting the4148

fundamental conservation laws. We can see that Eq. (5.19) explicitly conserves the4149

4-current [11]4150

jµind(x) = 2q

∫
d3p

(2π)3p0
pµf(x, p) , (5.22)
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by applying ∂µ on this expression and substituting back from the Boltzmann equation4151

Eq. (5.28)4152

∂µj
µ = 2q

∫
d3p

(2π)3p0

{
−qFµνpν

∂f(x, p)

∂pµ
+(p · u)κ

[
feq(p)

n(x)

neq
− f(x, p)

]}
.

(5.23)
The first term should naturally vanish because the collisionless Vlasov equation pre-4153

serves 4-current. This can be seen upon integration by parts and use of the antisym-4154

metry of Fµν . On the other hand, the collision term vanishes by design - see definitions4155

(5.20,5.21). This is in contrast to the Anderson-witting collision term, which does not4156

conserve current Eq. (5.3).4157

5.2 Linear response: electron-positron plasma4158

The transport properties of electron-positron plasma are governed by three Vlasov-4159

Boltzmann equations [8]4160

(p · ∂)f±(x, p)+qFµνpν
∂f±(x, p)

∂pµ
= C±(x, p) , (5.24)

(p · ∂)fγ(x, p) = Cγ(x, p) . (5.25)

The subscripts −, +, and γ indicate the transport equation for electrons, positrons,4161

and photons. These form a system of differential equations for each distribution func-4162

tion fi(x, p). We suppress the 4-momentum subscript for each species fi(x, p) =4163

fi(x, pi) to simplify notation.4164

Since photons cannot couple directly to the electromagnetic field, they do not4165

contribute to the dynamics of the electromagnetic field at first-order polarization4166

response as indicated in Eq. (5.25). This is not true for a QCD plasma where gluons4167

could couple directly to an external gluon field.4168

To find the effect of electrons and positrons on the electromagnetic fields, we use4169

the transport equations Eq. (5.24) to find the induced current in the plasma4170

jµind(x) = 2

∫
d3p

(2π)3p0
pµ [f+(x, p)− f−(x, p)] , (5.26)

found via Fourier transformation and related to the induced current in the linear4171

response equation4172

j̃µind(k) = Πµ
ν(k)Ã

ν(k) , (5.27)

to identify the polarization tensor Πµ
ν . To begin, we solve the Vlasov-Boltzmann4173

equation with the BGK collision term4174

(p · ∂)f±(x, p) + qFµνpν
∂f±(x, p)

∂pµ
= (p · u)κ±

[
f eq± (p)

n±(x)

neq±
− f±(x, p)

]
. (5.28)

Since the solutions for these equations will differ only by the sign of charge, we need4175

only solve one to understand dynamics. The ±, which indicates electrons or positrons,4176

may be dropped when unnecessary in the equations below.4177

We assume for the equilibrium distribution the covariant Fermi-Dirac distribution4178

function [180,179]:4179

f eq± (x, p) ≡ 1

e([p
µ+qAµ(x)]uµ±µq)/T + 1

, (5.29)
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where pµ + qAµ(x) is the canonical momentum in the presence of an electromagnetic4180

4-potential, uµ is the global 4-velocity of the medium, T denotes the temperature in4181

the medium rest frame, and µq is the chemical potential related to charge.4182

The linear response approximation assumes the distribution function can be writ-4183

ten as a sum of the equilibrium distribution feq(x, p) plus a small perturbation away4184

from the equilibrium δf(x, p)4185

f(x, p) = feq(x, p) + δf(x, p) . (5.30)

Here the small perturbation δf(x, p) is induced by an external electromagnetic field.4186

We expand Eq. (5.28) in equilibrium and perturbation terms [182]4187

(p · ∂) (feq(x, p) + δf(x, p)) + q
(
Fµν
eq + δFµν

)
pν
∂(feq(x, p) + δf(x, p))

∂pµ

= κ(p · u)
(
feq(p)

δn(x)

neq(x)
− δf(x, p)

)
. (5.31)

Since the equilibrium expressions are a solution to the collisionless Boltzmann equa-4188

tion, all the equilibrium terms combined are zero. The collision term is constructed4189

to be zero at equilibrium. We will neglect the Lorentz force due to the induced field4190

on the perturbation since it is second order in the perturbation4191

(p · ∂)δf(x, p) + qδFµνpν
∂f(x, p)

∂pµ
= κ(p · u)

(
feq(x, p)

δn(x)

neq(x)
− δf(x, p)

)
. (5.32)

where the quantity δn(x) is defined following the definitions(5.20,5.21) as4192

δn(x) ≡ 2

∫
d3p

(2π)3p0
(p · u)δf(x, p) . (5.33)

At this point, we will take the weak field limit of the equilibrium distribution, which4193

assumes the change in energy of a particle due to the electromagnetic field is small4194

in comparison to the thermal energy4195

qA(x) · u
T

≪ 1 . (5.34)

In this case, the equilibrium distribution becomes the usual4196

f eq± (x, p) ≡ 1

e(p
µuµ±µq)/T + 1

. (5.35)

An explicit solution of the Vlasov-Boltzmann equation can be obtained more easily4197

in momentum space after a Fourier transformation. We define the Fourier transform4198

g̃(kµ) of a general function g(xµ) of space-time coordinates as4199

g(x) =

∫
d4k

(2π)4
e−ik·x g̃(k) . (5.36)

The Fourier transformation replaces partial derivatives ∂µ with the 4-momentum kµ:4200

∂µ → −ikµ . (5.37)

The 4-vector kµ = (ω,k) represents the momentum and energy in the electromag-4201

netic field. In contrast, pµ = (E,p) represents the momentum and energy of plasma4202

constituents.4203
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Using these definitions, the Fourier-transformed Boltzmann equation reads [11]4204

−i(p · k)δ̃f(k, p) + qF̃µνpν
∂feq(p)

∂pµ
= (p · u)κ

[
feq(p)

neq
δ̃n(k)− δ̃f(k, p)

]
. (5.38)

In the following, we simplify the notation of derivatives of the equilibrium function4205

with respect to momentum as4206

∂feq(p)

∂pµ
=
dfeq(p)

d(p · u)
uµ ≡ f ′eq(p)uµ . (5.39)

We solve Eq. (5.38) for the perturbation δ̃f(k, p), which describes fluctuations away4207

from equilibrium due to the electromagnetic field4208

δ̃f(k, p) =
i

p · k + i(p · u)κ

[
− q(u · F̃ · p)f ′eq(p) +(p · u)κfeq(p)

neq
δ̃n(k)

]
. (5.40)

This can be readily integrated to obtain an equation for δ̃n(k)4209

δ̃n(k) = R(k)−Q(k)δ̃n(k) , (5.41)

where the integrals are defined as4210

R(k) ≡ −2i
∫

d3p

(2π)3p0
(p · u)

q(u · F̃ · p)f ′eq
p · k + i(p · u)κ

, (5.42)

Q(k) ≡ −2i κ
neq

∫
d3p

(2π)3p0
(p · u)2 feq(p)

p · k + i(p · u)κ
. (5.43)

The solution for δ̃n(k) in terms of the external fields is simply4211

δ̃n(k) =
R(k)

1 +Q(k)
. (5.44)

We can substitute this result back into (5.40) to obtain an explicit expression for4212

δ̃f(k, p) found in [11]4213

δ̃f(k, p) =
i

p · k + i(p · u)κ

[
− q(u · F̃ · p)f ′eq(p) +(p · u)κfeq(p)

neq

R(k)

1 +Q(k)

]
. (5.45)

The right-hand side contains only known quantities. In the next section, we will use4214

Eq. (5.45) to calculate the induced current in the plasma. Adding additional conserva-4215

tion laws requires further integrals to solve the Vlasov-Boltzmann equation involving4216

higher moments of the fluctuation δf as discussed in [224,225].4217

Induced current4218

The induced charge current is the sum of the antiparticle distribution f̃− and the4219

particle distribution f̃+4220

j̃µind(k) = 2

∫
d3p

(2π)3p0
pµ

∑
i=+,−

qif̃i(k, p) , (5.46)
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with the factor of two accounting for spin. Sometimes, this is referred to as the first4221

moment of δf . After expanding in linear response Eq. (5.30), and specifying q± = ±e4222

the induced current is a function of the perturbation4223

j̃µind(k) = 2

∫
d3p

(2π)3p0
pµ
(
e
[
f̃ eq+ (k, p)− f̃ eq− (k, p)

]
+e
[
δf̃+(k, p)− δf̃−(k, p)

] )
= 4e

∫
d3p

(2π)3p0
pµδf̃(k, p) . (5.47)

The equilibrium currents cancel in the weak field limit for zero chemical potential, and4224

the perturbations add since they differ by the charge δf± = ±eδf ′. For finite chemical4225

potential µq, the equilibrium terms can be combined with hyperbolic trig-identities4226

j̃µind(k) = 2e

∫
d3p

(2π)3p0
pµ
(
− sinh (µq)

cosh (p · u) + cosh (µq)

+
[
δf̃+(k, p)− δf̃−(k, p)

] )
.

(5.48)

For now, we will focus on the case of zero chemical potential, µq = 0, where the first4227

term vanishes. We can express the induced current in terms of defined integrals [11]4228

resulting from inserting Eq. (5.45) into the induced current4229

j̃µind(k) = Rµ(k)− R(k)

1 +Q(k)
Qµ(k) (5.49)

where the integrals Rµ(k) and Qµ(k) are defined analogously to (5.42,5.43) as4230

Rµ(k) ≡ −4q2i
∫

d3p

(2π)3p0
pµ

(u · F̃ · p)f ′eq
p · k + i(p · u)κ

, (5.50)

Qµ(k) ≡ −4qi κ
neq

∫
d3p

(2π)3p0
(p · u)pµ feq(p)

p · k + i(p · u)κ
. (5.51)

Note that we absorbed the factor 4e from the current (5.47) into the definition of these4231

integrals. The Rµ term is what one would find from the collisionless case κ→ 0+. The4232

induced current for the normal RTA collision term, which does not conserve current,4233

is obtained by setting δn→ neq or equivalently4234

j̃µAW(k) = Rµ(k)−Qµ(k) (5.52)

Covariant polarization tensor4235

To find the polarization tensor, we compare our result (5.49) to the covariant formu-4236

lation of Ohm’s law [227] which both describe the induced current in the momentum4237

space4238

j̃µ(k) = Πµ
ν (k)Ã

ν(k) . (5.53)

To perform this comparison and extract the polarization tensor we must rewrite the4239

Fourier transform of the electromagnetic tensor in terms of the 4-vector potential in4240

momentum space Ãµ(k)4241

F̃µν(k) = −ikµÃν(k) + ikνÃµ(k) . (5.54)
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We then substitute this into the definition of Rµ(k) (5.50) and isolate Ãµ as so it is4242

in the form of Eq. (5.53) to obtain [11]4243

Rµ(k) = −4q2
∫

d3p

(2π)3p0
f ′eq(p)×

(u · k)pµpν − (k · p)pµuν
p · k + i(p · u)κ

Ãν(k) , (5.55)

from which we see that the contribution of Rµ to the polarization tensor is4244

Rµ
ν (k) ≡ −4q2

∫
d3p

(2π)3p0
f ′eq(p)×

(u · k)pµpν − (k · p)pµuν
p · k + i(p · u)κ

. (5.56)

The contribution of the second term is hidden in the R(k) scalar. In terms of the4245

4-vector potential in the momentum space Ãν we have4246

R(k) = −2q
∫

d3p

(2π)3p0
(p · u)f ′eq(p)×

(u · k)pν − (k · p)uν
p · k + i(p · u)κ

Ãν(k) . (5.57)

We can identify in this expression a 4-vector Hν(k) defined as4247

Hν(k) ≡ −2q
∫

d3p

(2π)3p0
(p · u)f ′eq(p)×

(u · k)pν − (k · p)uν
p · k + i(p · u)κ

(5.58)

so that the polarization tensor is given by4248

Πµ
ν (k) = Rµ

ν (k)−
Qµ(k)Hν(k)

1 +Q(k)
, (5.59)

where the covariant quantities Rµ
ν , Q

µ, Hν , and Q are given by the integrals (5.56,4249

5.51, 5.58, 5.43) respectively. This is the final covariant form of the current conserving4250

covariant polarization tensor for an infinite homogeneous plasma. The bulk of the work4251

in applying Eq. (5.59) to a specific scenario is choosing an equilibrium distribution4252

and evaluating the integrals. Explicit expressions for the components of this tensor in4253

the rest frame of the plasma are found in the ultrarelativistic limit Eq. (6.4) and in4254

the nonrelativistic limit Eq. (4.55) in [11]. This polarization tensor is also derived in4255

[219] and [220]. The correction to the polarization tensor found by using the collision4256

term with current conservation Eq. (5.19) is given by the second term in Eq. (5.59).4257

The current conserving correction modifies the longitudinal polarization properties of4258

the tensor related to charge fluctuations but not the transverse properties related to4259

electromagnetic waves. The Anderson-Witting form of the polarization tensor found4260

using the collision term Eq. (5.3) is equivalent to Rµ
ν and the polarization tensor for4261

a collisionless plasma is Rµ
ν with κ→ 0+.4262

5.3 Self-consistent electromagnetic fields in a medium4263

To find the electromagnetic field in a plasma, we solve Maxwell’s equations self-4264

consistently in an infinite homogeneous and stationary polarizable medium. In this4265

medium, Maxwell’s equations take on the usual form [182]4266

∂[µF νρ](x) = 0, ∂µF
µν(x) = µ0J

ν(x) , (5.60)

Using the Fourier transform defined as in equation Eq. (5.36) we replace partial deriva-4267

tives ∂µ with the 4-momentum −ikµ. Then Maxwell’s equations in Fourier space are4268

−ik[µF̃ νρ](k) = 0, −ikµF̃µν(k) = µ0J̃
ν(k) , (5.61)
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k = (ω,k) is the 4-wavevector of the electromagnetic field. The properties of the4269

medium are introduced by writing the 4-current J̃µ in terms of its induced and ex-4270

ternal parts4271

J̃µ(k) = j̃µext(k) + j̃µind(k) . (5.62)

The induced current j̃µind, to leading order, is given by the polarization tensor through4272

Eq. (5.53). Though the induced current is linear with respect to the self-consistent field4273

Ãν , the field itself is intrinsically nonlinear regarding plasma response as we shall see4274

when solving for the self-consistent fields Eqs. (5.75-5.76). Nonlinear response comes4275

from higher-order terms involving nested convolution integrals of the polarization4276

tensor and the self-consistent potential and is required when the polarization current4277

is on the order of the external current.4278

Solving Maxwell’s equations in the Lorentz gauge k · Ã = 0 one finds the usual4279

expression4280

Ãµ(k) = −µ0

k2

(
j̃µext(k) + j̃µind(k)

)
= −µ0

k2

(
j̃µext(k) +Πµ

ν (k)Ã
ν(k)

)
,

(5.63)

µ0 denotes the magnetic permittivity of the vacuum, and we have used Eq. (5.53) to4281

express the induced current.4282

Projection of plasma polarization tensor4283

We proceed by algebraically solving for the self-consistent potential. To do this, we4284

first note that in a homogeneous medium, the response depends only on two indepen-4285

dent scalar polarization functions Π∥ and Π⊥ describing polarization in the parallel4286

and transverse directions relative to the wave-vector k [202]. The polarization tensor4287

may be written in terms of these polarization functions as4288

Πµν(k, u) = Π∥(k)L
µν(k, u) +Π⊥(k)S

µν(k, u) , (5.64)

where kµ is the 4-momentum of the field and uµ is the 4-velocity of the medium.4289

The polarization tensor represents the electromagnetic response of the medium to4290

the electromagnetic field. Π∥ usually describes charge fluctuations and Π⊥ describes4291

the properties of electromagnetic waves. For optically active or chiral mediums there4292

is also a rotational portion of the polarization tensor ΠR. Since we neglect spin,4293

our derivation of the polarization tensor is not sensitive to ΠR. Conventions for the4294

longitudinal and transverse projection tensors, Lµν and Sµν , may be found in [182].4295

These tensors are reproduced here for convenience4296

Lµν ≡ k2

(k · u)2 − k2

[
kµuν

(k · u)
+

kνuµ

(k · u)
− k2uµuν

(k · u)2
− kµkν

k2

]
, (5.65)

4297

Sµν ≡ gµν +
1

(k · u)2 − k2

[
kµkν − (k · u)(kµuν + kνuµ) + k2uµuν

]
. (5.66)

These projections are equivalent to ones defined in [202] up to an overall normal-4298

ization. To simplify the calculation, the wave-vector k is chosen, without loss of4299

generality, to point along the third spatial direction (µ = 3):4300

Πµ
ν (ω,k) =


− |k|

2

ω2 Π∥ 0 0 |k|
ω Π∥

0 Π⊥ 0 0
0 0 Π⊥ 0

− |k|ω Π∥ 0 0 Π∥

 . (5.67)
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Utilizing this decomposition, we can immediately see that the transverse polarization4301

function will be related to the Π1
1 = Π2

2 = Π⊥ component of the polarization tensor4302

defined in Eq. (5.59). Analogously the longitudinal portion of the polarization tensor is4303

given by calculating the Π3
3 = Π∥ component. The spatial component of the potential4304

Ã in these coordinates can be expressed as4305

Ã = Ã∥k̂ + Ã⊥ , (5.68)

which implies4306

Ã∥ =
k · Ã
|k|

, Ã⊥ = Ã− Ã∥k̂ , (5.69)

with analogous definitions for the current, j̃∥ and j̃⊥. Note that the Lorentz gauge

Fig. 51. Vector potential is projected onto k̂ = x̂3 = ẑ. Adapted from Ref. [3].

4307

condition ∂µA
µ = 0 implies4308

Ã∥ =
ω

|k|
ϕ̃ , (5.70)

with ϕ = A0. The induced charge is calculated using the projected polarization tensor4309

Eq. (5.67):4310

ρ̃ind(ω,k) = Π0
ν Ã

ν = −|k|
2

ω2
Π∥ϕ̃+

|k|
ω
Π∥Ã∥ . (5.71)

For the Lorentz gauge condition Eq. (5.70), one finds4311

ρ̃ind(ω,k) = Π∥ϕ̃

(
1− |k|

2

ω2

)
. (5.72)

The longitudinal current is,4312

j̃∥ind(ω,k) = Πz
ν Ã

ν = Π∥
ω

|k|
ϕ̃

(
1− |k|

2

ω2

)
, (5.73)

as expected from current conservation ∂µjµ(x) = 0. The induced transverse current4313

is4314

j⊥ind(ω,k) = Π⊥Ã⊥ . (5.74)
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Solving for the potential on both sides of Eq. (5.63) with the help of Eqs. (5.72-5.74)4315

gives the self-consistent solutions [9]4316

ϕ̃(ω,k) =
ρ̃ext(ω,k)

ε0(k
2 − ω2)

(
Π∥/(ω2ε0) + 1

) , (5.75)

Ã⊥(ω,k) =
µ0j̃⊥ext(ω,k)

k2 − ω2 − µ0Π⊥
. (5.76)

The gauge condition Eq. (5.70) gives the self-consistent potential Ã∥. These self-4317

consistent potentials determine the electric and magnetic fields via the usual relations4318

B̃(ω,k) = ik × Ã⊥ , Ẽ(ω,k) = −ikϕ̃+ iωÃ . (5.77)

To obtain the electromagnetic fields in position space, one must Fourier transform4319

Eqs. (5.75-5.76). If done analytically, this usually requires finding the poles in the4320

denominator of these expressions, which equates to finding the poles of the thermal4321

photon propagator. These poles represent propagating modes in the plasma. Modes4322

will often be located at complex values in the ω,k plane leading to finite lifetimes4323

and spatial dispersion.4324

Small back-reaction limit4325

Here, we briefly mention an alternative to the self-consistent fields, which comes from4326

assuming that the back reaction of the plasma due to the external fields is small4327

compared to the external field. In this case, one can use the external field in the4328

linear response equation instead of the total field4329

j̃µind(k) = Πµ
ν(k)Ã

ν
ext(k) . (5.78)

Inserting this into Eq. (5.63) successively to find a series expansion yields the same4330

expression as expanding Eqs. (5.75-5.76) in the polarization functions4331

ϕ̃(ω,k) =

∞∑
n=0

ρ̃ext(ω,k)

ε0(k
2 − ω2)

(
−
Π∥

ω2ε0

)n

, (5.79)

Ã⊥(ω,k) =

∞∑
n=0

µ0j̃⊥ext(ω,k)

(k2 − ω2)n+1
(µ0Π⊥)

n . (5.80)

The first term n = 0 is the vacuum field, and higher-order terms describe the back4332

reaction of the induced current on the external field. Notably, the series expansion of4333

Eq. (5.76) does not accurately represent the late-time magnetic field in QGP during4334

heavy-ion collisions. This is because the infinite series of Eqs. (5.75-5.76) must be4335

performed to capture the pole structure of the field.4336

Electromagnetic fields in a polarizable medium are often described using the elec-4337

tric displacement field D, the magnetic fields H, the polarization P, and the magne-4338

tization M. This formulation is only useful when the field or the medium’s response4339

is static or time-dependent. When introducing spatial and temporal dispersion, these4340

definitions are no longer unique [182]. For instance, if the magnetization depends on4341

space and time M(t, x) the time dependence of the magnetic field generated will lead4342

to electric fields through Faraday’s Law leading to ambiguity since the displacement4343

field no longer depends on just polarization field P.4344
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5.4 General properties of EM fields in a plasma4345

In the case of an infinite homogeneous plasma, its properties are completely de-4346

scribed by two independent polarization functions Π∥(k) and Π⊥(k). In the frame-4347

work presented here, the properties of these scalar functions are imparted on the4348

electromagnetic fields via the poles in the Fourier transform of the propagators in4349

Eqs. (5.75-5.76). After contour integration, one effectively gets a sum of different elec-4350

tromagnetic fields at each pole, the amplitude of which depends on the residue of4351

the pole, and a spacetime dependence, leading to growth attenuation or propagation4352

depending on the pole’s location. An example of this process in done in [9], where we4353

Fourier transform the magnetic field in the center of heavy-ion collisions.4354

Dispersion relation4355

We can find the poles of the propagator or equivalently the zeros of the dispersion4356

relation by inverting Maxwell’s equations4357

−ikµF̃µν = µ0(j̃
ν
ind + j̃νext) . (5.81)

Including the induced current on the left-hand side of the equation and writing the4358

expression in terms of Aµ one finds,4359

(k2gµν − kµkν + µ0Π
µν)Ãν = −µ0j̃

ν
ext . (5.82)

The propagator Dµ
ν (k) is obtained by inverting the previous equation4360

Ãν(k) = −Dµ
ν (k) j̃

ν
ext(k) . (5.83)

The poles of Dµ
ν (k) are given by the dispersion equation [182]:4361

1

(k · u)2
[
(k · u)2 + µ0Π∥(k)

] [
k2 + µ0Π⊥(k)

]2
= 0 . (5.84)

The transverse mode has duplicate solutions as it describes modes in a plane perpen-4362

dicular to k.4363

The dispersion Eq. (5.84) can be solved for numerous choices of variables describ-4364

ing the modes such as frequency, phase velocity, or wavevector. We chose to solve for4365

the modes of the plasma in terms of frequency ωm(k) which can be thought of as a4366

quasi-particle m with energy ω and momentum k analogous to the usual momentum4367

energy relation4368

E2 = p2 +m2 , (5.85)

with c = 1. This is not always the best choice for simplifying the solutions of Eq. (5.84),4369

but these modes are often the easiest to interpret. A study of the modes for the general4370

polarization tensor is not the most informative process unless one is looking for general4371

behavior which can be found in most plasma physics textbooks. Usually, in looking4372

at these modes ωm(k), one must first assume the external field’s shape or some flow4373

distribution in the plasma by specifying the equilibrium momentum distribution to4374

yield interesting effects in the modes such as plasma instabilities.4375

When the plasma is perturbed in time in a way that doesn’t depend on space,4376

such as for a plane wave, one can take k → 0 for both the transverse and longitudinal4377

roots of the dispersion relation which reduces the frequency of plasma oscillations [11,4378

9]4379

ω± = − iκ
2
±
√
ω2
p −

κ

4

2
, (5.86)
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the plasma frequency ωp is explicitly given in the ultrarelativistic and nonrelativistic4380

limits, respectively, by [11]:4381

ω2
p =

1

3
m2

D (UR) , ω2
p = m2

L (NR) , (5.87)

with4382

m2
D =

e2T

3
. (5.88)

The Debye screening mass mD describes the strength of polarization in the plasma.4383

The plasma frequency ωp is the characteristic response frequency of the plasma. For4384

an external field which is an oscillatory wave of the form E = E0e
−iωt, one would4385

find that the response is weakly-damped or over-damped depending on the size of κ4386

according to Eq. (4.57). Waves are weakly damped for κ≪ ωp, and since the square4387

root is imaginary for κ > 2ωp, waves become over-damped. These general statements4388

are subject to the spacetime dependence of the external perturbation. For instance, if4389

a particle moves through the plasma at a constant velocity, the field will not experience4390

much damping if the velocity is much less than the speed of sound in the plasma.4391

In the static limit ω → 0 the zeros in the longitudinal dispersion relation take on4392

the form4393

|k| = ±imD . (5.89)

Fourier transforming using the positive root in Eq. (5.75) gives the Debye-Hückel4394

screening of a stationary charge within the plasma [186]4395

ϕ(r) =
Zαℏc e−r/λD

r
, with λD =

mD

ℏc
. (5.90)

The Debye length λD describes the size of the polarization cloud around a charge4396

generated by the plasma.4397

Permittivity, susceptibility, and conductivity4398

In most fields of applied physics the effects of a polarizable medium on electromagnetic4399

fields are not described by the polarization functions Π∥ and Π⊥. It is instructive to4400

connect these quantities to more commonplace definitions such as relative permittivity4401

ϵ, susceptibility χ, and conductivity σ.4402

The dielectric and susceptibility tensors are related to the spatial portion of the4403

polarization tensor Πi
j [227,182],4404

Ki
j(ω,k) = εij/ε0 = 1 +

Πi
j(ω,k)

ω2
= 1 + χi

j(ω,k) . (5.91)

When we project on the axis µ = 3, the spatial portion of the polarization tensor is4405

Πi
j(ω,k) =

Π⊥ 0 0
0 Π⊥ 0
0 0 Π∥

 . (5.92)

It is then natural to discuss transverse and longitudinal susceptibilities,4406

χ∥(ω,k) =
Π∥(ω,k)

ω2
, and χ⊥(ω,k) =

Π⊥(ω,k)

ω2
. (5.93)

and their associated permeabilities K∥ and K⊥. These quantities are useful for study-4407

ing the attenuation of electromagnetic fields by looking at light absorption.4408
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The conductivity tensor is found by taking the spatial part of the linear response4409

equation Eq. (5.53) and expressing the vector potential in terms of the electric field4410

iωÃi = Ẽi [227,182]4411

σ⊥(ω,k) ≡ −iωχ⊥(ω,k) = −i
Π⊥(ω,k)

ω
, (5.94)

σ∥(ω,k) ≡ −iωχ∥(ω,k) = −i
Π∥(ω,k)

ω
. (5.95)

The long wavelength limit k → 0 the conductivity reduces to the Drude model of4412

conductivity [228] with τ = 1/κ4413

σ∥(ω, 0) = σ⊥(ω, 0) =
σ0

1− iω/κ
. (5.96)

with the static conductivity given by4414

σ0 =
m2

D

3κ
. (5.97)

The Drude model is equivalent to solving the Vlasov-Boltzmann equation using the4415

Anderson-Witting collision term Eq. (5.3) and neglecting spatial dispersion.4416

These quantities are discussed in detail and plotted in [11]. While these quantities4417

are useful for communicating the physics of plasma response, the limits of these quan-4418

tities must be taken carefully to retain the causal properties of the field. Specifically,4419

tacitly expanding these quantities in either ω and k and then inserting them into4420

the self-consistent potentials Eqs. (5.75-5.76) will not necessarily generate causal so-4421

lutions. Instead of carefully expanding and taking limits of these quantities to ensure4422

analyticity, it’s often easier to expand the electromagnetic fields within their Fourier4423

transforms as is done in Appendix B of [9].4424

5.5 Advances in linear response: discussion and outlook4425

The main result of [11] is the polarization tensor Eq. (5.59) which is an appropriate4426

solution for an infinite polarizable medium with damping due to collisions. Addition-4427

ally, the analytic form of this tensor in phase space is found in the ultrarelativistic4428

and nonrelativistic limits. The addition of current conservation leads to a correction4429

in the longitudinal portion of the polarization tensor compared to the one found using4430

the Anderson-Witting collision term.4431

Here, we only consider electrons and positrons, neglecting the effects of spin. Our4432

framework would be improved by incorporating spin into our kinetic description of4433

plasmas. This could be done by taking the classical limit of the quantum kinetic4434

transport of the Wigner function as in [229]. This would be especially important in4435

quark-gluon plasmas, where we study the magnetic field. Below, we will summarize4436

a few areas of future work advancing the description of plasmas presented here.4437

Energy conserving collision term4438

The polarization tensor Eq. (5.59) conserves current but not explicitly energy. Energy4439

conservation can be ensured by adding a correction to the collision term similar4440

to Eq. (5.19) but involving the second moment of δf which is related to energy-4441

momentum density [224]4442
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C = −(p · u)κ
[
δf(x, p)− δn(x)

n(eq)
− Γ (eq)

1 (x, p)

∫
(dq)(q · u)Γ (eq)

1 (q)δf(x, q)∫
(dq)(q · u)(Γ (eq)

1 (q))2f (eq)(q)
...

− Pµνpν

∫
(dq)(q · u)Pµνqνδf(x, q)∫

(dq)(q · u)PµνqνPµβqβf (eq)(q)

]
, (5.98)

where we use q to distinguish momenta being integrated over and Γ1(x, p) is defined4443

as4444

Γ1(x, p) = 1− (p · u)
∫
(dq)(q · u)f(x, q)∫
(dq)(q · u)2f(x, q)

= 1− (p · u)n(x)
T 00(x)

, (5.99)

and analogously4445

Γ
(eq)
1 (p) = 1− (p · u)

∫
(dq)(q · u)f (eq)(q)∫
(dq)(q · u)2f (eq)(q)

= 1− (p · u)n(eq)

T 00
(eq)

. (5.100)

The projector operatorPµν(u) is4446

Pµν(u) = gµν − uµuν . (5.101)

We show in [9] that the energy-momentum violation cancels in the current for a4447

matter-antimatter plasma. Finding the polarization tensor, including energy-momentum4448

conservation, is the subject of future work. The addition of this term in the current is4449

studied in relativistic hydrodynamics in [225]. Instead of adding these complex cor-4450

rection terms, it may be better to use the Fokker-Planck equation or its simplified4451

counterpart the LBO or Doughtery collision term [230,231,232], which manifestly4452

conserves energy-momentum and current, and is better suited to study electromag-4453

netic grazing collisions.4454

Applications to other plasmas4455

The main motivation of this work was to derive a relativistic polarization tensor that4456

could be used to describe quark-gluon plasma and other plasmas where damping is4457

important. In Chapter 6 we discuss the application of the ultrarelativistic limit of the4458

polarization tensor to study the electromagnetic properties of QGP. This polarization4459

tensor is easy to generalize to other ultrarelativistic antimatter plasmas. Since the4460

particles are massless, increasing the number of plasma particle species merely leads4461

to an enhancement of the Debye mass [9,233]4462

mD
2
(EM) =

∑
u,d,s

q2fT
2Nc

3
≡ CemT

2 , (5.102)

where Cem = 2e2/3. We implement the nonrelativistic solution to the polarization4463

tensor to study the screening of thermonuclear reactions in BBN by electron-positron4464

plasma. This discussion can be found in Sec. 4.2.4465

If considering a plasma of particles of different masses, such as an electron-proton4466

plasma, one needs only to find a polarization tensor for each particle species and then4467

sum them up in the induced current Eq. (5.46).4468

Fully relativistic polarization tensor4469

One can evaluate the integrals in Eq. (5.59) by assuming an appropriate equilibrium4470

distribution to find the polarization tensor. As mentioned above this is done for the4471
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ultrarelativistic and the nonrelativistic limits in [11]. For the full relativistic calcula-4472

tion, relevant for plasma where the temperature is on the order of the mass of the4473

plasma constituents m ≈ T , one must integrate the relativistic Fermi function. This4474

can be done by writing it in the series representation [30]4475

feq(|ppp|) =
1

e
√
|p|2+m2/T + 1

=

∞∑
n=1

(−1)n+1
(
e−
√
|p|2+m2/T

)n
,

(5.103)

whose integral results in an infinite sum of Bessel functions of the second kind, for4476

instance when calculating the equilibrium density one finds4477

neq =
1

π2
T 3

∞∑
n=1

g2
(−1)n+1K2

(
n
m

)
n

. (5.104)

The modified Bessel functions of the second kind K2(x) with the (−1)n+1 alternate4478

between exponential growth and decay as n increases. This complicates the calculation4479

of the polarization tensor since the angular integrals and momentum integrals no4480

longer factor out in Rµ
ν , Q

µ, Hν , and Q. Such a calculation would be necessary to4481

investigate the thermal mass of quarks in QGP.4482

Linear response in strong fields4483

We are interested to see if we can generalize this framework to strong fields where4484

the Coulomb interaction energy is close to the thermal energy4485

qA(x) · U
T

≈ 1 . (5.105)

We feel it should be possible to derive the electromagnetic field in plasma for small4486

perturbations away from the strong field equilibrium4487

f(x, p) = feq(x, p) + δf(x, p) , (5.106)

where in the Boltzmann limit the strong field equilibrium distribution is [218,179]4488

feq(x, p) = exp (−uµ[pµ + qAµ(x)]/T ) . (5.107)

Of course, this assumes the strong field equilibrium solution is stable under elec-4489

tromagnetic perturbations. As of the writing of this document, it seems that the4490

assumption of linear response is incompatible with strong fields, indicating that the4491

plasma response in the strong fields cannot be described by a polarization tensor, as4492

outlined in this chapter. A resolution to this topic requires further investigation.4493

Mixed-species collision term4494

We also hope to generalize this framework to involve a Vlasov-Boltzmann equation4495

system that represents each plasma species with a different collision term. In matrix4496

form, this system of Boltzmann equations for an electron-positron plasma would look4497

like4498

−i(p · k)

[
δ̃f−
δ̃f+

]
+ (u · F̃ · p)

[
q−f

′(eq)
−

q+f
′(eq)
+

]
= (p · u)

[
κ−− κ−+
κ−+ κ++

] [
C̃(f−)

C̃(f+)

]
. (5.108)
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One can then use a separate collision rate to represent the collisions between different4499

species. The issue here is that the BGK collision term approximates collisions in the4500

plasma as a medium effect so this system of equations is trivial since it does not4501

allow momentum transfer between distributions of different species. In future work,4502

we would like to propose a new collision term that allows momentum transfer between4503

species but is still simpler than the microscopic collision term Eq. (5.17).4504

6 Dynamic response of QGP to electromagnetic fields4505

6.1 Plasma properties of QGP4506

In this chapter, we discuss the application of the ultrarelativistic limit of the polar-4507

ization tensor in Chapter 5.1 to the electromagnetic properties of quark-gluon plasma4508

(QGP), as found in [9]. QGP is an extreme state of matter composed of free quarks4509

and gluons, which occurs in the aftermath of colliding nuclei in particle accelerators4510

and existed a few microseconds after the big bang [30].4511

The electromagnetic fields generated by colliding relativistic heavy-ions in particle4512

colliders are some of the largest in the known Universe, on the order of ec|B| ≈ m2
π,4513

but exist for very short times tcoll = 2R/γ ∼ 10−25 s due to the Lorentz contraction4514

of the colliding nuclei. The magnetic field generated in these collisions is interesting4515

due to its role in separating electric charge in the QGP through the chiral magnetic4516

effect (CME) [234]. The electric current generated by the CME could lead to a charge4517

separation along magnetic field lines. If a magnetic field survives in QGP until the4518

time of hadronization of the QGP, which we will refer to as the freeze-out time tf ,4519

it could also lead to a difference in the global polarization of Λ hyperons and anti-4520

hyperons [235]. Charge separation in the hadron was recently studied in [236].4521

Fig. 52. The vacuum magnetic field for two colliding lead Pb nuclei is shown for impact
parameter b = 3R and γ = 37. (At larger Lorentz factors, a graphical representation is
difficult to visualize without scaling the fields with γ). The vector potential is plotted in the
collision plane, and red arrows indicate the direction of the moving nuclei. This plot mainly
shows the magnetic field distribution, which is Lorentz contracted along the direction of
motion. The magnetic field lines circulate out of the collision plane perpendicular to the
velocity, adding together at the collision center. Adapted from Ref. [3].
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The distribution of the vacuum magnetic fieldgiven by the Liénard-Wiechert fields4522

is plotted in Figure (52). This is the same magnetic field found by Lorentz boosting4523

the Coulomb field of a nucleus at rest. We neglect the portion of the field that depends4524

on acceleration since it is small for vacuum scattering of heavy nuclei, compared to4525

the field that depends on velocity.4526

This magnetic field is treated as an external perturbation on the quark-gluon4527

plasma, filling the overlap region between the two nuclei after they collide. For sim-4528

plicity, the QGP is modeled as an infinite medium so that complications do not arise4529

at the boundary. The temperature of QGP depends strongly on the collision energy of4530

the nuclei. In [9] we study Au+Au collisions at
√
sNN = 200GeV with QGP tempera-4531

ture T = 300MeV. After Heavy Ions collide, the conducting QGP medium generates4532

long-range decaying tails or wakefields in the magnetic field that extend far beyond4533

the collision time [237]. The conductivity of QGP determines the strength of these4534

wakefields. We aim to model these fields in QGP using the formulation discussed in4535

Chapter 5.1.4536

EM conductivity of quark-gluon plasma4537

Past analytic calculations [237,238,239,240,241,242,243] solve Maxwell’s equations4538

in the presence of static electric conductivity4539

σ0 =
m2

D

3κ
, (6.1)

in a hydrodynamically evolving QGP. For a collisionless plasma κ→ 0, the conductiv-4540

ity is infinite, and the medium behaves as a perfect conductor. This work introduces4541

the frequency and wavevector dependence of the QGP analytically using the polar-4542

ization tensor previously obtained in [11].4543

Numerical calculations [244,245] have incorporated the dynamical response of4544

QGP by numerically solving the coupled magneto-hydrodynamic equations for a con-4545

ducting quark-gluon plasma in the presence of the colliding nuclear charges. More re-4546

cent calculations [246,247] also incorporate the frequency and wave-vector dependence4547

of QGP response to electromagnetic fields by solving the coupled Vlasov-Boltzmann–4548

Maxwell equations numerically.4549

The Ultrarelativistic EM polarization tensor in QGP4550

Here we review the ultra-relativistic polarization tensor, including damping, for the4551

idealized case where the QGP is infinite, homogeneous, and stationary. This calcu-4552

lation differs from [11] only in that we consider three quark species: up, down, and4553

strange. We start with the Vlasov-Boltzmann equation for each quark flavor Eq. (5.28)4554

where we assume all quarks collide on a momentum-averaged time scale τrel = κ−1.4555

The induced current jµind can be written in terms of the phase-space distribution of4556

quarks and anti-quarks as4557

jµind(x) = 2Nc

∫
(dp)pµ ×

∑
u,d,s

qf (ff (x, p)− ff̄ (x, p)) = 4NQe
2

∫
(dp)pµδf(x, p) ,

(6.2)
where Nc is the number of colors. We sum over the quark flavors with charges qf ,4558

and in the final result, we replace qfδf = δff . The result Eq. (6.2) differs from that4559

found in the case of an electron-positron plasma by the factor4560

NQ ≡ Nc

∑
f

(qf/e)
2 = 2 , (6.3)
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for three light quark flavors (u, d, s).4561

In the ultrarelativistic limit, neglecting quark masses, one finds the polarization4562

functions [11]:4563

Π∥(ω, |k|) = m2
D

ω2

k2

(
1− ωΛ

2|k| − iκΛ

)
, (6.4)

Π⊥(ω, |k|) =
m2

D ω

4|k|

(
Λ

(
ω′2

k2 − 1

)
− 2ω′

|k|

)
, (6.5)

where Λ(ω,k) is defined as4564

Λ ≡ ln
ω′ + |k|
ω′ − |k|

, with ω′ = ω + iκ . (6.6)

The parallel and transverse polarization functions have the same form as in [11] except4565

for an overall factor NQ as found in [233,9]:4566

mD
2
(EM) =

∑
u,d,s

q2fT
2Nc

3
= NQ

e2T 2

3
≡ CemT

2 , (6.7)

where Cem = 2e2/3. In the following, we will use mD as short-hand notation for4567

the electromagnetic screening mass since we do not discuss color screening here. The4568

transverse conductivity σ⊥, which controls the response of the plasma to magnetic4569

fields, is related to the imaginary part of the transverse polarization function as in4570

Eq. (5.94)4571

QCD Damping rate in QGP4572

The strength of the plasma response to an external magnetic field depends on the4573

quark damping rate κ and the electromagnetic screening mass mD. The scale of the4574

collisional quark damping κ is much larger than the electromagnetic Debye mass mD4575

and electromagnetic damping κEM because it depends on the strong coupling constant4576

αs, not the electromagnetic coupling α.4577

In [9], we use the first-order electromagnetic Debye mass Eq. (6.7) to estimate the4578

electromagnetic screening mass mD. The collision rate κ is related to the inverse of4579

the mean-free time of quarks in QGP. We adopt a value for κ from [209] where the4580

mean-free time is given by the product of the parton density in the QGP and the4581

quark-parton transport cross-section, leading to the expression4582

κ(T ) =
10

17π
(9Nf + 16)ζ(3)α2

s ln

(
1

αs

)
T , (6.8)

where Nf is the number of flavors, ζ(x) denotes the Riemann zeta function, and4583

αs(T ) is the running QCD coupling. We model the running of the QCD coupling4584

constant as a function of temperature in the range T < 5Tc using a fit provided in4585

[30]:4586

αs(T ) ≈
αs(Tc)

1 + C ln(T/Tc)
, (6.9)

where C = 0.760 ± 0.002. For the QCD (pseudo-)critical temperature we use Tc =4587

160MeV. The QED Debye mass is compared to κ(T ) in Fig. 53. This is plotted along4588

with the electromagnetic Debye mass in Figure (53). We can expect the electromag-4589

netic response of QGP response to be over-damped since κ > 2√
3mD

giving a plasma4590
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Fig. 53. Plot of the electromagnetic Debye mass and the QCD dampening rate κ as a
function of temperature. At temperature T = 300MeV used here, κ = 4.86mD. Published
in Ref. [9] under the CC BY 4.0 license

frequency Eq. (4.57) which is imaginary over the range of temperatures relevant for4591

QGP.4592

We can then use the Debye mass Eq. (6.7) and the damping rate Eq. (6.8) to4593

calculate the static conductivity Eq. (5.97), shown as a black line in Figure (54), which4594

we then compare to Lattice calculations of the conductivity in QGP.4595

These lattice-QCD results [249,250,251,252] are scaled with temperature T to4596

remove the linear temperature dependence. We also scale the conductivity with Cem,4597

as defined in Eq. (6.7), such that computations with different numbers of flavors can4598

be compared. One can see that the conductivity value predicted by Eq. (6.8), plotted4599

in Fig. 54 as a black line, lies well within the lattice-QCD results. We will use the4600

value predicted by Figure (54), σ = 5.01MeV at T = 300GeV, in the next section to4601

compute the screened heavy-ion fields in QGP.4602

Magnetic field in QGP during a nuclear collision4603

Assuming that the QGP is an infinite homogeneous and stationary medium near4604

equilibrium, we can solve Maxwell’s equations for the self-consistent fields as in Sec-4605

tion 5.3. Then the magnetic field is given by Fourier transforming the momentum4606

space expressions given in Eqs. (5.76-5.77) to position space4607

B(t, z) =

∫
d4k

(2π)4
e−iωt+ikzz

µ0ik × j̃⊥ext(ω,k)

k2 − ω2 − µ0Π⊥(ω,k)
. (6.10)

We choose the collision center as the origin of our spatial coordinate system and align4608

the spatial z-axis with the beam direction. Due to the symmetry of the colliding ions,4609

the only nonzero component of the magnetic field along the z-axis points out of the4610

collision plane (x − y plane). In our coordinate system used in [9], this corresponds4611

to the y-component of the magnetic field.4612

https://creativecommons.org/licenses/by/4.0/


Will be inserted by the editor 167

Fig. 54. The black line shows the static conductivity σ0 as a function of temperature
predicted by Eq. (5.97), which is compared to lattice results adapted from [248] for T > Tc.
The factor of Cem, defined in Eq. (6.7), normalizes the conductivity by the charge of the
plasma constituents, such that results using different numbers of dynamical quark flavors
can be compared. We indicate each set of points by its arXiv reference: blue diamonds [249,
250], green circles [251], and red triangles [252]. Adapted from Ref. [3].

For ease of calculation, we specify the external 4-current using two colliding Gaus-4613

sians charge distributions normalized to the nuclear rms radius R and charge Z:4614

ρext±(t,x) =
Zqγ

π3/2R3
e−

1
R2 (x∓b/2)2e−

1
R2 y2

× e−
γ2

R2 (z∓βt)2 , (6.11)

where γ is the Lorentz factor, β is the ratio of the ion speed to the speed of light,4615

respectively, and b is the impact parameter of the collision. The plus and minus signs4616

indicate motion in the ±ẑ-direction (beam-axis). This charge distribution corresponds4617

to the vector current4618

jext±(t,x) = ±βẑρext±(t,x) . (6.12)

Further details of the external charge distribution for two colliding nuclei are presented4619

in Appendix B. of [9].4620

The numerical result for the position-space magnetic field found by Fourier trans-4621

forming Eq. (6.10) using the full transverse polarization function Eq. (6.4) is shown4622

as a red dashed line in Fig. 55 and compared with various models of conductivity.4623

These other models and their connections to published works are discussed in detail4624

in [9].4625

4626

One of the important results of this paper was that the fields of the ions, travel-4627

ing near the speed of light, probe the polarization tensor along the light cone. The4628

transverse conductivity on the light cone is4629

σ⊥(ω = |k|) = i
m2

D

4ω

(
κ2

ω2
ξ ln ξ +

iκ

ω
(ξ + 1)

)
, (6.13)
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Fig. 55. The magnetic field at the collision center as a function of time, with T = 300MeV
for Au-Au collisions (Z = 79) at

√
sNN = 200GeV and impact parameter b = 6.4 fm. The

left panel shows the magnetic field on a semi-logarithmic scale up to ct = 5 fm. The right
panel shows the early-time magnetic field on a linear scale. At the chosen temperature, the
electromagnetic Debye mass is mD = 74MeV, and the quark damping rate is κ = 4.86mD.
This gives a static conductivity of σ0 = 5.01MeV. Comparing the different approximations,
we see they all have similar asymptotic behavior. Only the Drude conductivity, the light-cone
limit of the conductivity, and the full conductivity σ⊥(ω,k) describe the field at early times.
Note that the plasma is considered homogeneous and stationary here. In a more realistic
situation, the field would become screened only after the QGP is formed in the collision.
Published in Ref. [9] under the CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/
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where ξ is defined as4630

ξ ≡ 1− 2i
ω

κ
. (6.14)

The light-cone conductivity simplifies the calculation of plasma response since it only4631

depends on a single variable (ω = |k|). One can see that Eq. (6.13) shown as an4632

opaque grey line traces out the full numerical solution Eq. (6.10) shown as a dashed4633

red line. The light-cone conductivity accurately models the magnetic field in QGP4634

since the ions traveling near the light’s speed only sample the polarization tensor on4635

the light-cone. One subject of future research is to use the light-cone conductivity4636

to attain analytical formulas for electromagnetic fields in position space in light-cone4637

coordinates.4638

The simplest method to calculate the late-time magnetic field of colliding nuclei is4639

to assume a static conductivity [240]. In this case, the magnetic field in Fourier space4640

has the form4641

B̃(ω,k) =
µ0ik × j̃⊥ext

k2 − ω2 − iωσ0
, (6.15)

which is Fourier transformed using contour integration in the appendix of [9] to4642

By(t) = −µ0
Zqβ

(2π)

bσ0
4t2

e
−b2σ0

16t . (6.16)

Looking at the left panel of Fig. 55, the static conductivity initially overestimates the4643

magnetic field after the external field begins to disappear since the effect of dynamic4644

screening is not captured. Every model of the response function predicts similar values4645

for the magnetic field approaching the freeze-out time tf ≈ 5 fm/c [253]. This is4646

because the static conductivity determines the dependence of the magnetic field at4647

times later than t > 1/σ ≈ 59 fm/c after which damping of the initial magnetic field4648

pulse is irrelevant.4649

Alternatively, by assuming a point-like charge distribution R → 0 and approxi-4650

mating the magnetic field for 1/σ0 > t≫ 1/κ one can derive the late-time magnetic4651

field using the Drude conductivity Eq. (5.96)4652

By(t) ≈ µ0
Zeβbκωp

8π

[
1− e−κt

κt
− e−κtEi (tκ)

]
. (6.17)

This result has the advantage of accurately describing the late-time magnetic field4653

t > tf at large γ as shown in Figure (56).4654

Both these results illustrate that the late-time magnetic field has a finite limit4655

when γ → ∞ as it depends only on β, but not on γ. The approximation used to4656

derive this solution holds for γβ ≫
√
κ/σ0 ≈ 12. In Fig. 56 we compare Eq. (6.16)4657

to the full numerical result to explore its dependence on γ. One can see that the4658

static case Eq. (6.16) (black solid line) begins to diverge from the numerical solution,4659

shown as dashed colored lines at around γ ≈ 15. In Fig. 56 one can see that the4660

late-time magnetic field has a very soft dependence on collision energy. The time4661

at which hadronization occurs tf , which varies with collision energy, has a much4662

stronger effect on the magnitude of the freeze-out field. Since the remnant magnetic4663

field at hadronization does not depend strongly on the collision energy, an experi-4664

mental measurement of the magnetic field at different collision energies could permit4665

a determination of the electrical conductivity of the QGP or a determination of the4666

freeze-out time of QGP if the conductivity is assumed to be known.4667

As the QGP begins to hadronize at time tf , one may expect hadrons to be statis-4668

tically polarized with respect to the magnetic field. In [235] the measured difference4669

in global polarization of hyperons and anti-hyperons is used to give an upper bound4670
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Fig. 56. Plot of the freeze-out magnetic field for T = 150MeV. We expect that around
this temperature QGP will hadronize into a mixed phase [254]. The approximate late time
solution Eq. (6.16) shown as an orange dashed line is compared to numerical calculations
using the full polarization tensor Eq. (6.10) and to the late time analytic expansion Eq. (6.17).
The approximate solution does not fully match the ultrarelativistic limit until times t > tσ ≈
59 fm/c. The magnetic field is independent of the beam energy over a wide range of γ but
begins to diverge slowly from the ultrarelativistic case at around γ ≤ 15 for the time window
shown in the figure. Lower beam energies result in a somewhat larger field at late times.
Adapted from Ref. [9]

on the magnetic field at QGP freeze-out, B ∼ 2.7× 10−3m2
π for Au+Au collisions at4671 √

sNN = 200GeV. Looking at Fig. 56 the magnetic field for γ = 100 at QGP freeze-4672

out tf ≈ 5 fm/c is predicted to be B ≈ 1.2 × 10−3m2
π, somewhat below this upper4673

bound. Note that this assumes the polarization rapidly equilibrates in the plasma. It4674

also neglects any interactions during the hadron gas phase of the collision.4675

6.2 Towards a more realistic QGP4676

The work reviewed here calculates the magnetic field of two colliding nuclei in a sta-4677

tionary, homogeneous QGP using relativistic kinetic theory with collisional damping.4678

Our first main finding in [9] was that the response to the external magnetic field is4679

controlled by the polarization function along the light-cone, Πµ
ν (ω, |k| ≈ ω). This4680

allowed us to derive an approximate analytic solution for the magnetic field that con-4681

siders the dynamics of the medium’s response. We also discussed how the late-time4682

magnetic field at hadronization does not depend strongly on the collision energy. This4683

gives the possibility that an experimental measurement of the magnetic field at dif-4684

ferent collision energies could permit a determination of the electrical conductivity4685

of the QGP [236]. We must also know how the freeze-out time depends on collision4686

energy to make this measurement.4687
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The QGP medium4688

This calculation can be improved in numerous ways. One of our main interests is to4689

incorporate a finite size and a time-dependent onset in the QGP medium, which we4690

describe here as infinite and homogenous. Boundary effects at the QGP surface are4691

likely crucial for many collisions since the Debye sphere is not much smaller than4692

the size of QGP, or similarly, the skin depth is probably large in comparison to the4693

radius of QGP. Plasma skin effects could lead to novel electromagnetic phenomena4694

at the QGP surface. We have begun some work on implementing an initial onset and4695

formation time for QGP in the Vlasov-Boltzmann equation , effectively creating a4696

boundary in time. This work should be extendable to studying plasma with a finite4697

boundary in space which could be interesting with respect to the study of surface4698

plasmons.4699

QGP is also not stationary; peripheral heavy-ion collisions are one of the most4700

highly rotational systems ever observed [255,256,257,258]. This is due to the huge4701

angular momentum of the colliding system. This rotation can be incorporated into the4702

equilibrium distribution [218], which creates a temperature that depends on radius4703

[259] changing our description of the magnetic field.4704

In [9] it would have been simple to use the adiabatic expansion of a relativistic4705

ideal gas [260] to parameterize the temperature dependence as a function of time. To4706

reduce the number of free parameters, we found the magnetic field at large times by4707

simply assuming the plasma temperature was the freeze-out temperature Figure (56).4708

Many enhancements can be made that require numerical solutions of the linear re-4709

sponse equations, such improvements would include a realistic space-time dependence4710

of the medium (formation and hydrodynamical evolution), nonzero net baryon den-4711

sity, quark thermal mass corrections [261], and viscous corrections to the unperturbed4712

phase-space distribution used to calculate the polarization tensor.4713

Electric field in QGP4714

Of course, we could have also studied electric fields in QGP which are in the same4715

order as the magnetic fields e|E| ≈ m2
π. These fields are of interest in strong field4716

QED since they are far beyond the Schwinger limit e|E| ≈ m2
e. Preliminary QGP4717

electric field calculations are shown in Figure (57). In QGP, the transverse electric4718

field Ey is screened while the eclectic field is enhanced in the direction of motion. The4719

electric field is also interesting since it could do a significant amount of work on the4720

QGP possibly reheating it after its formation through ohmic heating.4721

4722

Additionally, we were interested in studying the distribution of electric charge4723

around relativistic heavy nuclei in QGP. This can be found by Fourier transforming4724

Eq. (5.72) for the external charge distribution Eq. (6.11). The induced charge density4725

for a single traveling nucleus at low γ is shown in Figure (57). The external charge4726

distribution increases with the Lorentz factor γ, but the total induced charge, which4727

is the integral of the red dashed line, remains constant but trails behind further at4728

larger velocities.4729

4730

As seen in Figure (58), a wakefield of induced charge forms behind the traveling4731

nucleus in QGP. In Figure (59), we show a two-dimensional contour plot of the charged4732

wake. The wakefield depicted in Figure (59) is damped at traverse distances instead4733

of conical as in the collisionless case.4734

The Electromagnetic polarization tensor in QGP also has applicability in cos-4735

mology, where a QGP existed during the first 10 µs of the early Universe. In the4736

next chapter, we will study somewhat later times, a few seconds after the Big-Bang,4737

when the universe was filled with electron-positron plasma. In these situations, the4738
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Fig. 57. Plots comparing the electric field in vacuum, shown as a black dashed line, to the
electric field in QGP shown as the red points. The left plot shows the transverse electric
field screened by the plasma. The plot on the right shows the electric field in the direction of
motion enhanced by the plasma. We choose T = 300MeV and Z = 79, for Au-AU collisions
at

√
s = 200GeV at an impact parameter of half nuclear overlap b = 1R = 6.4 fm. The

vertical line in the left plot indicates y = R, approximately the transverse size of QGP.
Adapted from Ref. [3].

assumption of homogeneity and stationary of the medium on the scale of the relevant4739

parameters, mD, and κ, is well justified.4740
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Fig. 58. The external (black), induced (red dashed), and total charge density (blue dashed)
for a single nucleus traveling in the +ẑ direction at γ = 1.2 on the left and γ = 5 on the
right. The induced charge distribution trails behind the nuclei. The external charge density
increases with γ. The induced charge distribution trails behind the nuclei more for larger γ
. Adapted from Ref. [3].

6.3 Effective inter-nuclear potential4741

We calculate the potential of light nuclei in the early Universe electron-positron4742

plasma by Fourier transforming the screened scalar potential ϕ of a single travel-4743

ing nuclei Eq. (5.75)4744

ϕ(t,x) =

∫
d4k

(2π)4
e−iωt+ik·x ρ̃ext(ω,k)

ε∥(ω,k)(k
2 − ω2)

, (6.18)
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Fig. 59. 2D plot of the wake field of a single traveling gold nucleus γ = 5 in QGP. The blue
arrow indicates the direction of motion and the grey disk represents the Lorentz contracted
nucleus. Lines of constant charge density are shown as contours. Adapted from Ref. [3].

where ρ̃ext(ω,k) is the Fourier-transformed charge distribution of nuclei traveling at4745

a constant velocity, and ε∥(ω,k) is the longitudinal relative permittivity. The relative4746

permittivity can be written in terms of the polarization tensor as4747

ε∥(ω,k) =

(
Π∥(ω,k)

ω2
+ 1

)
. (6.19)

In the linear response framework Eq. (5.53), the electromagnetic field still obeys4748

the principle of superposition so the potential between two nuclei can be inferred4749

simply from the potential of a single nucleus.4750

We can perform the ω integration in Eq. (6.18) using the delta function in the4751

definition of the external charge distribution, whose effect is to set ω = βN · k where4752

βN = vN/c is the nuclei velocity. Then we have4753

ϕ(t,x) = Ze

∫
d3k

(2π)3
eik·(x−βNt) e−k

2 R2

4

k2ε∥(−βN · k,k)
, (6.20)

where R is the Gaussian radius parameter. In nonrelativistic approximation the4754

Lorentz factor γ ≈ 1 and we use the convention ε∥(−βN · k,k) used in [262,193,4755

194,196] which gives the correct causality for the potential. This ensures that, with-4756

out damping, the wakefield occurs behind the moving nucleus.4757

Reaction rate enhancement4758

We use the same argument as [170] to find the enhancement factor due to damped-4759

dynamic screening. The enhancement of a nuclear reaction process by screening is4760

related to the WKB probability of tunneling through the Coulomb barrier4761

P (E) = exp

(
−2
√
2µr

ℏc

∫ rc

R

dr
√
U(r)− E

)
, (6.21)
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often referred to as the penetration factor. U(r) is the potential energy of the two4762

colliding nuclei, µr is their reduced mass, E is the relative energy of the collision, R is4763

the radius of the nucleus, and rc is the classical turning point. In the weak screening4764

limit, the screening charge density varies on the scale of λD, which is here on the4765

order of Ångstrom. The distance scales relevant for tunneling are between R and rc,4766

which is on the order of 10 fm. This allows us to approximate the contribution to the4767

potential energy from screening, H(r) defined as4768

H(r) ≡ U(r)− Uvac(r) , (6.22)

as constant over the integral in Eq. (6.21) taking the value of Eq. (4.72) at the origin,4769

H(0) = Z1ϕ2(0) = Z1Z2α

(
mD −

βNm
2
D

2κ

)
. (6.23)

Then, the screening effect reduces to a constant shift in the relative energy E →4770

E+H(0). In this approximation, the enhancement to reaction rates can be represented4771

by a single factor [170,263]4772

F = exp

[
H(0)

T

]
= exp

[
Z1Z2α

T

(
mD −

βNm
2
D

2κ

)]
. (6.24)

This result is only valid in the weak damping limit ωp < κ. The first term is the4773

normal weak field screening result, and the second is the contribution of damped-4774

dynamic screening. Due to the large damping rate in comparison to the Debye mass4775

and the small velocities of nuclei Eq. (4.68) during BBN, the correction due to damped4776

dynamic screening is small, changing H(0) by 10−5.4777

7 Magnetism in the Plasma Universe4778

7.1 Overview of primordial magnetism4779

Macroscopic domains of magnetic fields have been found in all astrophysical envi-4780

ronments from compact objects (stars, planets, etc.); interstellar and intergalactic4781

space; and surprisingly in deep extra-galactic void spaces. Considering the ubiquity4782

of magnetic fields in the universe [264,265,266], we search for a common primor-4783

dial mechanism for the origin of the diversity of magnetism observed today. In this4784

chapter, IGMF will refer to experimentally observed intergalactic fields of any origin4785

while primordial magnetic fields (PMF) refers to fields generated via early universe4786

processes possibly as far back as inflation.4787

IGMF are notably difficult to measure and difficult to explain. The bounds for4788

IGMF at a length scale of 1 Mpc are today [267,268,269,270,271]4789

10−8 G > BIGMF > 10−16 G . (7.1)

We note that generating PMFs with such large coherent length scales is nontriv-4790

ial [272] though currently the length scale for PMFs are not well constrained [273].4791

Faraday rotation from distant radio active galaxy nuclei (AGN) [274] suggest that4792

neither dynamo nor astrophysical processes would sufficiently account for the pres-4793

ence of magnetic fields in the universe today if the IGMF strength was around the4794

upper bound of BIGMF ≃ 30 − 60 nG as found in Ref. [271]. Such strong magnetic4795

fields would then require that at least some portion of the IGMF arise from primor-4796

dial sources that predate the formation of stars. The conventional elaboration of the4797

origins for cosmic PMFs are detailed in [275,276,273].4798
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Fig. 60. Qualitative plot of the primordial magnetic field strength over cosmic time. All
figures are printed in temporal sequence in the expanding universe beginning with high
temperatures (and early times) on the left and lower temperatures (and later times) on the
right. Published in Ref. [4] under the CC BY 4.0 license. Adapted from Ref. [1]

Magnetized baryon inhomogeneities which in turn could produce anisotropies4799

in the cosmic microwave background (CMB) [277,63]. We note that according to4800

Jedamzik [278] the presence of a intergalactic magnetic field of BPMF ≃ 0.1 nG could4801

be sufficient to explain the Hubble tension.4802

Our motivating hypothesis is outlined qualitatively in Fig. 60 where PMF evolu-4803

tion is plotted over the temperature history of the universe. The descending blue band4804

indicates the range of possible PMF strengths. The different epochs of the universe4805

according to ΛCDM are delineated by temperature. The horizontal lines mark two4806

important scales: (a) the Schwinger critical field strength given by4807

BC =
m2

e

e
≃ 4.41× 1013 G . (7.2)

where electrodynamics is expected to display nonlinear characteristics and (b) the4808

upper field strength seen in magnetars of ∼ 1015 G. A schematic of magnetogenesis4809

is drawn with the dashed red lines indicating spontaneous formation of the PMF4810

within the early universe plasma itself. The e+e− era is notably the final epoch4811

where antimatter exists in large quantities in the cosmos [1]. We demonstrate that4812

fundamental quantum statistical analysis can lead to further insights on the behavior4813

of magnetized plasma, and show that the e± plasma is overall paramagnetic and yields4814

a positive overall magnetization, which is contrary to the traditional assumption that4815

matter-antimatter plasma lack significant magnetic responses.4816

Electron-positron abundance4817

As the universe cooled below temperature T =me (the electron mass), the thermal4818

electron and positron comoving density depleted by over eight orders of magnitude.4819

At Tsplit = 20.3 keV, the charged lepton asymmetry (mirrored by baryon asymmetry4820

and enforced by charge neutrality) became evident as the surviving excess electrons4821

https://creativecommons.org/licenses/by/4.0/
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persisted while positrons vanished entirely from the particle inventory of the universe4822

due to annihilation.4823

Fig. 61. Number density of electron e− and positron e+ to baryon ratio ne±/nB as a
function of photon temperature in the universe. See Sec. 4.2 for further details. In this work
we measure temperature in units of energy (keV) thus we set the Boltzmann constant to
kB = 1. Published in Ref. [7] under the CC BY 4.0 license

The electron-to-baryon density ratio ne−/nB is shown in Fig. 61 as the solid blue4824

line while the positron-to-baryon ratio ne+/nB is represented by the dashed red4825

line. These two lines overlap until the temperature drops below Tsplit = 20.3 keV4826

as positrons vanish from the universe marking the end of the e+e− plasma and the4827

dominance of the electron-proton (e−p) plasma. The two vertical dashed green lines4828

denote temperatures T = me ≃ 511 keV and Tsplit = 20.3 keV. These results were4829

obtained using charge neutrality and the baryon-to-photon content (entropy) of the4830

universe; see details in [1], see also Sec. 4.2. The two horizontal black dashed lines de-4831

note the relativistic T ≫ me abundance of ne±/nB = 4.47×108 and post-annihilation4832

abundance of ne−/nB = 0.87. Above temperature T ≃ 85 keV, the e+e− primordial4833

plasma density exceeded that of the Sun’s core density ne ≃ 6× 1026 cm−3 [279].4834

Conversion of the dense e+e− pair plasma into photons reheated the photon back-4835

ground [19] separating the photon and neutrino temperatures. The e+e− annihilation4836

and photon reheating period lasted no longer than an afternoon lunch break. Be-4837

cause of charge neutrality, the post-annihilation comoving ratio ne−/nB = 0.87 [1] is4838

slightly offset from unity in Fig. 61 by the presence of bound neutrons in α particles4839

and other neutron containing light elements produced during BBN epoch.4840

The abundance of baryons is itself fixed by the known abundance relative to4841

photons [45] and we employed the contemporary recommended value nB/nγ = 6.09×4842

10−10. The resulting chemical potential needs to be evaluated carefully to obtain4843

the behavior near to Tsplit = 20.3 keV where the relatively small value of chemical4844

potential µ rises rapidly so that positrons vanish from the particle inventory of the4845

https://creativecommons.org/licenses/by/4.0/
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universe while nearly one electron per baryon remains. The detailed solution of this4846

problem is found in [27,1] leading to the results shown in Fig. 61.4847

7.2 Theory of thermal matter-antimatter plasmas4848

To evaluate magnetic properties of the thermal e+e− pair plasma we take inspiration4849

from Ch. 9 of Melrose’s treatise on magnetized plasmas [182]. We focus on the bulk4850

properties of thermalized plasmas in (near) equilibrium.4851

We consider a homogeneous magnetic field domain defined along the z-axis as4852

B = (0, 0, B) , (7.3)

with magnetic field magnitude |B| = B. Following [280], we reprint the microscopic4853

energy of the charged relativistic fermion within a homogeneous magnetic field given4854

by4855

En
σ,s(pz, B) =

√
m2

e + p2z + eB
(
2n+ 1 +

g

2
σs
)
, (7.4)

where n ∈ 0, 1, 2, . . . is the Landau orbital quantum number, pz is the momentum4856

parallel to the field axis and the electric charge is e ≡ qe+ = −qe− . The index σ in4857

Eq. (7.4) differentiates electron (e−; σ = +1) and positron (e+; σ = −1) states. The4858

index s refers to the spin along the field axis: parallel (↑; s = +1) or anti-parallel4859

(↓; s = −1) for both particle and antiparticle species.4860

aligned: s = +1 anti-aligned: s = −1

electron: σ = +1 UMag > 0 UMag < 0

positron: σ = −1 UMag < 0 UMag > 0

Fig. 62. Organizational schematic of matter-antimatter (σ) and polarization (s) states
with respect to the sign of the nonrelativistic magnetic dipole energy UMag obtainable
from Eq. (7.4). Published in Ref. [7] under the CC BY 4.0 license

The reason Eq. (7.4) distinguishes between electrons and positrons is to ensure the4861

correct nonrelativistic limit for the magnetic dipole energy is reached. Following the4862

conventions found in [281], we set the gyro-magnetic factor g ≡ ge+ = −ge− > 0 such4863

that electrons and positrons have opposite g-factors and opposite magnetic moments4864

relative to their spin; see Fig. 62.4865

We recall the conventions established in Sec. 1.3. As the Universe undergoes the4866

isotropic expansion, the temperature gradually decreases as T ∝ 1/a(t), where a(t)4867

https://creativecommons.org/licenses/by/4.0/
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represents the scale factor. The assumption is made that the magnetic flux is con-4868

served over comoving surfaces, implying that the primordial relic field is expected to4869

dilute as B ∝ 1/a(t)2 [1]. Conservation of magnetic flux requires that the magnetic4870

field through a comoving surface L2
0 remain unchanged. The magnetic field strength4871

under expansion [276] starting at some initial time t0 is then given by4872

B(t) = B0
a20
a2(t)

→ B(z) = B0 (1 + z)
2
, (7.5)

where B0 is the comoving value obtained from the contemporary value of the magnetic4873

field today. Magnetic fields in the cosmos generated through mechanisms such as4874

dynamo or astrophysical sources do not follow this scaling [274]. It is only in deep4875

intergalactic space where matter density is low are magnetic fields preserved (and4876

thus uncontaminated) over cosmic time.4877

From Eq. (1.33) and Eq. (7.5) there emerges a natural ratio of interest which is4878

conserved over cosmic expansion4879

b ≡ eB(t)

T 2(t)
=
eB0

T 2
0

≡ b0 = const. (7.6)

10−3 > b0 > 10−11 , (7.7)

given in natural units (c = ℏ = kB = 1). We computed the bounds for this cosmic4880

magnetic scale ratio by using the present day IGMF observations given by Eq. (7.1)4881

and the present CMB temperature T0 = 2.7 K ≃ 2.3× 10−4 eV [37].4882

Eigenstatess of magnetic moment in cosmology4883

As statistical properties depend on the characteristic Boltzmann factor E/T , another4884

interpretation of Eq. (7.6) in the context of energy eigenvalues (such as those given4885

in Eq. (7.4)) is the preservation of magnetic moment energy relative to momentum4886

under adiabatic cosmic expansion. The Boltzmann statistical factor is given by4887

x ≡ E

T
. (7.8)

We can explore this relationship for the magnetized system explicitly by writing out4888

Eq. (7.8) using the KGP energy eigenvalues written in Eq. (7.4) as4889

xnσ,s =
En

σ,s

T
=

√
m2

e

T 2
+
p2z
T 2

+
eB

T 2

(
2n+ 1 +

g

2
σs
)
. (7.9)

Introducing the expansion scale factor a(t) via Eq. (1.33), Eq. (7.5) and Eq. (7.6).4890

The Boltzmann factor can then be written as4891

xnσ,s(a(t)) =

√
m2

e

T 2(t0)

a(t)2

a20
+
p2z,0
T 2
0

+
eB0

T 2
0

(
2n+ 1 +

g

2
σs
)
. (7.10)

This reveals that only the mass contribution is dynamic over cosmological time. The4892

constant of motion b0 defined in Eq. (7.6) is seen as the coefficient to the Landau4893

and spin portion of the energy. For any given eigenstate, the mass term drives the4894

state into the nonrelativistic limit while the momenta and magnetic contributions are4895

frozen by initial conditions.4896
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In comparison, the Boltzmann factor for the DP energy eigenvalues are given by4897

xnσ,s|DP =

√√√√(√m2
e

T 2
+
eB

T 2
(2n+ 1 + σs) +

eB

2meT

(g
2
− 1
)
σs

)2

+
p2z
T 2

, (7.11)

which scales during FLRW expansion as4898

xnσ,s(a(t))|DP =√√√√(√m2
e

T 2
0

a(t)2

a20
+
eB0

T 2
0

(2n+ 1 + σs) +
eB0

2meT0

a0
a(t)

(g
2
− 1
)
σs

)2

+
p2z,0
T 2
0

. (7.12)

While the above expression is rather complicated, we note that the KGP Eq. (7.10)4899

and DP Eq. (7.11) Boltzmann factors both reduce to the Schödinger-Pauli limit as4900

a(t)→∞ thereby demonstrating that the total magnetic moment is protected under4901

the adiabatic expansion of the universe.4902

Higher order non-minimal magnetic contributions can be introduced to the Boltz-4903

mann factor such as ∼ (e/m)2B2/T 2. The reasoning above suggests that these terms4904

are suppressed over cosmological time driving the system into minimal electromag-4905

netic coupling with the exception of the anomalous magnetic moment. It is interesting4906

to note that cosmological expansion then serves to ‘smooth out’ the characteristics of4907

more complex electrodynamics erasing them from a statistical perspective in favor of4908

minimal-like dynamics.4909

Magnetized fermion partition function4910

To obtain a quantitative description of the above evolution, we study the bulk proper-4911

ties of the relativistic charged/magnetic gasses in a nearly homogeneous and isotropic4912

primordial universe via the thermal Fermi-Dirac or Bose distributions .4913

The grand partition function for the relativistic Fermi-Dirac distribution is given4914

by the standard definition [282]4915

lnZtotal =
∑
α

ln

(
1 + Υα1...αm exp

(
−Eα

T

))
, (7.13)

Υα1...αm
= λα1

λα2
. . . λαm

, (7.14)

where we are summing over the set all relevant quantum numbers α = (α1, α2, . . . , αm).4916

We note here the generalized the fugacity Υα1...αm
allowing for any possible defor-4917

mation caused by pressures effecting the distribution of any quantum numbers. In4918

general, Υ = 1 represents the maximum entropy and corresponds to the normal4919

Fermi distribution. The deviation of Υ ̸= 1 represents the configurations of reduced4920

entropy without pulling the system off a thermal temperature. Inhomogeneity can4921

arise from the influence of other forces on the gas such as gravitational forces. This is4922

precisely the kind of behavior that may arise in the e± epoch as the dominant photon4923

thermal bath keeps the Fermi gas in thermal equilibrium while spatial nonequilibria4924

could spontaneously develop.4925

In the case of the Landau problem, there is an additional summation over G̃ which4926

represents the occupancy of Landau states [283] which are matched to the available4927

phase space within ∆px∆py. If we consider the orbital Landau quantum number n to4928

represent the transverse momentum p2T = p2x+p
2
y of the system, then the relationship4929
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that defines G̃ is given by4930

L2

(2π)2
∆px∆py =

eBL2

2π
∆n , G̃ =

eBL2

2π
. (7.15)

The summation over the continuous pz is replaced with an integration and the double4931

summation over px and py is replaced by a single sum over Landau orbits4932

∑
pz

→ L

2π

∫ +∞

−∞
dpz ,

∑
px

∑
py

→ eBL2

2π

∑
n

, (7.16)

where L defines the boundary length of our considered volume V = L3.4933

The partition function of the e+e− plasma can be understood as the sum of four4934

gaseous species4935

lnZe+e− = lnZ↑e+ + lnZ↓e+ + lnZ↑e− + lnZ↓e− , (7.17)

of electrons and positrons of both polarizations (↑↓). The change in phase space4936

written in Eq. (7.16) modify the magnetized e+e− plasma partition function from4937

Eq. (7.13) into4938

lnZe+e− =
eBV

(2π)2

±1∑
σ

±1∑
s

∞∑
n=0

∫ ∞
−∞

dpz

[
ln

(
1 + λσξσ,s exp

(
−
En

σ,s

T

))]
(7.18)

Υσ,s = λσξσ,s = exp
µσ + ησ,s

T
, (7.19)

where the energy eigenvalues En
σ,s are given in Eq. (7.4). The index σ in Eq. (7.18)4939

is a sum over electron and positron states while s is a sum over polarizations. The4940

index s refers to the spin along the field axis: parallel (↑; s = +1) or anti-parallel4941

(↓; s = −1) for both particle and antiparticle species.4942

We are explicitly interested in small asymmetries such as baryon excess over an-4943

tibaryons, or one polarization over another. These are described by Eq. (7.19) as the4944

following two fugacities:4945

(a) Chemical fugacity λσ4946

(b) Polarization fugacity ξσ,s4947

For matter (e−; σ = +1) and antimatter (e+; σ = −1) particles, a nonzero relativis-4948

tic chemical potential µσ = σµ is caused by an imbalance of matter and antimatter.4949

While the primordial electron-positron plasma era was overall charge neutral, there4950

was a small asymmetry in the charged leptons (namely electrons) from baryon asym-4951

metry [27,284] in the universe. Reactions such as e+e− ↔ γγ constrains the chemical4952

potential of electrons and positrons [282] as4953

µ ≡ µe− = −µe+ , λ ≡ λe− = λ−1e+ = exp
µ

T
, (7.20)

where λ is the chemical fugacity of the system.4954

We can then parameterize the chemical potential of the e+e− plasma as a function4955

of temperature µ→ µ(T ) via the charge neutrality of the universe which implies4956

np = ne− − ne+ =
1

V
λ
∂

∂λ
lnZe+e− . (7.21)
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In Eq. (7.21), np is the observed total number density of protons in all baryon species.4957

The chemical potential defined in Eq. (7.20) is obtained from the requirement that4958

the positive charge of baryons (protons, α particles, light nuclei produced after BBN)4959

is exactly and locally compensated by a tiny net excess of electrons over positrons.4960

We then introduce a novel polarization fugacity ξσ,s and polarization potential4961

ησ,s = σsη. We propose the polarization potential follows analogous expressions as4962

seen in Eq. (7.20) obeying4963

η ≡ η+,+ = η−,− , η = −η±,∓ , ξσ,s ≡ exp
ησ,s
T

. (7.22)

An imbalance in polarization within a region of volume V results in a nonzero polar-4964

ization potential η ̸= 0. Conveniently since antiparticles have opposite signs of charge4965

and magnetic moment, the same magnetic moment is associated with opposite spin4966

orientations. A completely particle-antiparticle symmetric magnetized plasma will4967

have therefore zero total angular momentum.4968

Euler-Maclaurin integration4969

Before we proceed with the Boltzmann distribution approximation which makes up4970

the bulk of our analysis, we will comment on the full Fermi-Dirac distribution analysis.4971

The Euler-Maclaurin formula [285] is used to convert the summation over Landau4972

levels n into an integration given by4973

b∑
n=a

f(n)−
∫ b

a

f(x)dx =
1

2
(f(b) + f(a))

+

j∑
i=1

b2i
(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
+R(j) , (7.23)

where b2i are the Bernoulli numbers and R(j) is the error remainder defined by4974

integrals over Bernoulli polynomials. The integer j is chosen for the level of approxi-4975

mation that is desired. Euler-Maclaurin integration is rarely convergent, and in this4976

case serves only as an approximation within the domain where the error remainder is4977

small and bounded; see [283] for the nonrelativistic case. In this analysis, we keep the4978

zeroth and first order terms in the Euler-Maclaurin formula. We note that regulariza-4979

tion of the excess terms in Eq. (7.23) is done in the context of strong field QED [286]4980

though that is outside our scope.4981

Using Eq. (7.23) allows us to convert the sum over n quantum numbers in Eq. (7.18)4982

into an integral. Defining4983

fnσ,s = ln

(
1 + Υσ,s exp

(
−
En

σ,s

T

))
, (7.24)

Eq. (7.18) for j = 1 becomes4984

lnZe+e− =
eBV

(2π)2

±1∑
σ,s

∫ +∞

−∞
dpz(∫ +∞

0

dnfnσ,s +
1

2
f0σ,s +

1

12

∂fnσ,s
∂n

∣∣∣∣
n=0

+R(1)

)
(7.25)
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It will be useful to rearrange Eq. (7.4) by pulling the spin dependency and the ground4985

state Landau orbital into the mass writing4986

En
σ,s = m̃σ,s

√
1 +

p2z
m̃2

σ,s

+
2eBn

m̃2
σ,s

, (7.26)

εnσ,s(pz, B) =
En

σ,s

m̃σ,s
, m̃2

σ,s = m2
e + eB

(
1 +

g

2
σs
)
, (7.27)

where we introduced the dimensionless energy εnσ,s and effective polarized mass m̃σ,s4987

which is distinct for each spin alignment and is a function of magnetic field strength4988

B. The effective polarized mass m̃σ,s allows us to describe the e+e− plasma with the4989

spin effects almost wholly separated from the Landau characteristics of the gas when4990

considering the plasma’s thermodynamic properties.4991

With the energies written in this fashion, we recognize the first term in Eq. (7.25)4992

as mathematically equivalent to the free particle fermion partition function with a4993

re-scaled massmσ,s. The phase-space relationship between transverse momentum and4994

Landau orbits in Eq. (7.15) and Eq. (7.16) can be succinctly described by4995

p2T ∼ 2eBn , 2pT dpT ∼ 2eBdn , dp3 = 2πpT dpT dpz (7.28)

eBV

(2π)2

∫ +∞

−∞
dpz

∫ +∞

0

dn→ V

(2π)3

∫
dp3 (7.29)

which recasts the first term in Eq. (7.25) as4996

lnZe+e− =
V

(2π)3

±1∑
σ,s

∫
dp3 ln

1 + Υσ,s exp

−mσ,s

√
1 + p2/m2

σ,s

T

+ . . .

(7.30)

As we will see in the proceeding section, this separation of the ‘free-like’ partition4997

function can be reproduced in the Boltzmann distribution limit as well. This marks4998

the end of the analytic analysis without approximations.4999

Boltzmann approach to electron-positron plasma5000

Since we address the temperature interval 200 keV > T > 20 keV where the effects of5001

quantum Fermi statistics on the e+e− pair plasma are relatively small, but the gas5002

is still considered relativistic, we will employ the Boltzmann approximation to the5003

partition function in Eq. (7.18). However, we extrapolate our results for presentation5004

completeness up to T ≃ 4me.5005

aligned: s = +1 anti-aligned: s = −1

electron: σ = +1 +µ+ η +µ− η

positron: σ = −1 −µ− η −µ+ η

Table 7. Organizational schematic of matter-antimatter (σ) and polarization (s) states with
respect to the chemical µ and polarization η potentials as seen in Eq. (7.34). Companion to
Table 62.
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To simplify the partition function, we consider the expansion of the logarithmic5006

function5007

ln (1 + x) =

∞∑
k=1

(−1)k+1

k
xk, for |x| < 1 . (7.31)

The partition function shown in equation Eq. (7.18) can be rewritten removing the5008

logarithm as5009

lnZe+e− =
eBV

(2π)2

±1∑
σ,s

∞∑
n=0

∞∑
k=1

∫ +∞

−∞
dpz

(−1)k+1

k
exp

(
k
σµ+ σsη − m̃σ,sε

n
σ,s

T

)
,

(7.32)

σµ+ σsη − m̃σ,sε
n
σ,s < 0 , (7.33)

which is well behaved as long as the factor in Eq. (7.33) remains negative. We evaluate5010

the sums over σ and s as5011

lnZe+e− =
eBV

(2π)2

∞∑
n=0

∞∑
k=1

∫ +∞

−∞
dpz

(−1)k+1

k
×(

exp

(
k
+µ+ η

T

)
exp

(
−k

m̃+,+ε
n
+,+

T

)
+exp

(
k
+µ− η
T

)
exp

(
−k

m̃+,−ε
n
+,−

T

)
+exp

(
k
−µ− η
T

)
exp

(
−k

m̃−,+ε
n
−,+

T

)
+ exp

(
k
−µ+ η

T

)
exp

(
−k

m̃−,−ε
n
−,−

T

))
(7.34)

We note from Fig. 62 that the first and forth terms and the second and third terms5012

share the same energies via5013

εn+,+ = εn−,− , εn+,− = εn−,+ . εn+,− < εn+,+ , (7.35)

Eq. (7.35) allows us to reorganize the partition function with a new magnetization5014

quantum number s′ which characterizes paramagnetic flux increasing states (s′ = +1)5015

and diamagnetic flux decreasing states (s′ = −1). This recasts Eq. (7.34) as5016

lnZe+e− =
eBV

(2π)2

±1∑
s′

∞∑
n=0

∞∑
k=1

∫ +∞

−∞
dpz

(−1)k+1

k[
2ξs′ cosh

kµ

T

]
exp

(
−k m̃s′ε

n
s′

T

)
(7.36)

with dimensionless energy εns′ , polarization mass m̃s′ , and polarization ηs′ redefined5017

in terms of the moment orientation quantum number s′5018

m̃2
s′ = m2

e + eB
(
1− g

2
s′
)
, (7.37)

η ≡ η+ = −η− ξ ≡ ξ+ = ξ−1− , ξs′ = ξ±1 = exp
(
± η
T

)
. (7.38)

We introduce the modified Bessel function Kν (see Ch. 10 of [30]) of the second5019

kind5020

Kν

(m
T

)
=

√
π

Γ (ν − 1/2)

1

m

(
1

2mT

)ν−1 ∫ ∞
0

dp p2ν−2 exp
(
−mε
T

)
, (7.39)

ν > 1/2 , ε =
√

1 + p2/m2 , (7.40)
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allowing us to rewrite the integral over momentum in Eq. (7.36) as5021

1

T

∫ ∞
0

dpz exp

(
−km̃s′ε

n
s′

T

)
=W1

(
km̃s′ε

n
s′(0, B)

T

)
. (7.41)

The function Wν serves as an auxiliary function of the form Wν(x) = xKν(x). The5022

notation ε(0, B) in Eq. (7.41) refers to the definition of dimensionless energy found in5023

Eq. (7.27) with pz = 0.5024

Summation over the auxillary function Wν can be replaced via Euler-Maclaurin5025

integration Eq. (7.23) as5026

∞∑
n=0

W1(n) =

∫ ∞
0

dnW1(n) +
1

2

[
W1(∞) +W1(0)

]
+

1

12

[
∂W1

∂n

∣∣∣∣
∞
− ∂W1

∂n

∣∣∣∣
0

]
+R(2), (7.42)

Using the properties of Bessel function we have5027

∂W1(s
′, n)

∂n
= −k

2eB

T 2
K0

(
k

T

√
m̃2

s′ + 2eBn

)
, W1(∞) = 0, (7.43)∫ ∞

a

dxx2K1(x) = a2K2(a) . (7.44)

This yields5028

∞∑
n=0

W1(s
′, n) =

(
T 2

k2eB

)[(
km̃s′

T

)2

K2

(
km̃s′

T

)]
+

1

2

[(
km̃s′

T

)
K1

(
km̃s′

T

)]
+

1

12

[(
k2eB

T 2

)
K0

(
km̃s′

T

)]
. (7.45)

The standard Boltzmann distribution is obtained by summing only k = 1 and5029

neglecting the higher order terms. Therefore we can integrate the partition function5030

over the summed Landau levels. After truncation of the series and error remainder5031

(up to the first derivative j = 2), the partition function Eq. (7.32) can then be written5032

in terms of modified BesselKν functions of the second kind and cosmic magnetic scale5033

b0, yielding5034

lnZe+e− ≃
T 3V

π2

±1∑
s′

[
ξs′ cosh

µ

T

](
x2s′K2(xs′) +

b0
2
xs′K1(xs′) +

b20
12
K0(xs′)

)
,

(7.46)

xs′ =
m̃s′

T
=

√
m2

e

T 2
+ b0

(
1− g

2
s′
)
. (7.47)

The latter two terms in Eq. (7.46) proportional to b0K1 and b20K0 are the uniquely5035

magnetic terms present in powers of magnetic scale Eq. (7.6) containing both spin5036

and Landau orbital influences in the partition function. These are magnetic effects to5037

order O(eB) and O(eB)2 respectively. The K2 term is analogous to the free Fermi5038

gas [283] being modified only by spin effects.5039
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This ‘separation of concerns’ can be rewritten as5040

lnZS =
T 3V

π2

±1∑
s′

[
ξs′ cosh

µ

T

] (
x2s′K2(xs′)

)
, (7.48)

lnZSO =
T 3V

π2

±∑
s′

[
ξs′ cosh

µ

T

](b0
2
xs′K1(xs′) +

b20
12
K0(xs′)

)
, (7.49)

where the spin (S) and spin-orbit (SO) partition functions can be considered inde-5041

pendently. When the magnetic scale b0 is small, the spin-orbit term Eq. (7.49) becomes5042

negligible leaving only paramagnetic effects in Eq. (7.48) due to spin. In the nonrel-5043

ativistic limit, Eq. (7.48) reproduces a quantum gas whose Hamiltonian is defined as5044

the free particle (FP) Hamiltonian plus the magnetic dipole (MD) Hamiltonian which5045

span two independent Hilbert spaces HFP⊗HMD. The nonrelativistic limit is further5046

discussed in Sec. 7.2.5047

Writing the partition function as Eq. (7.46) instead of Eq. (7.32) has the additional5048

benefit that the partition function remains finite in the free gas (B → 0) limit. This5049

is because the free Fermi gas and Eq. (7.48) are mathematically analogous to one5050

another. As the Bessel Kν functions are evaluated as functions of x± in Eq. (7.47), the5051

‘free’ part of the partition K2 is still subject to spin magnetization effects. In the limit5052

where B → 0, the free Fermi gas is recovered in both the Boltzmann approximation5053

k = 1 and the general case
∑∞

k=1.5054

Nonrelativistic limit of the magnetized partition function5055

While we label the first term in Eq. (7.30) as the ‘free’ partition function, this is not5056

strictly true as the partition function dependant on the magnetic-mass we defined in5057

Eq. (7.27). When determining the magnetization of the quantum Fermi gas, deriva-5058

tives of the magnetic field B will not fully vanish on this first term which will resulting5059

in an intrinsic magnetization which is distinct from the Landau levels.5060

This represents magnetization that arises from the spin magnetic energy rather5061

than orbital contributions. To demonstrate this, we will briefly consider the weak field5062

limit for g = 2. The effective polarized mass for electrons is then5063

m̃2
+ = m2

e , (7.50)

m̃2
− = m2

e + 2eB , (7.51)

with energy eigenvalues5064

E+
n =

√
p2z +m2

e + 2eBn , (7.52)

E−n =

√(
E+

n

)2
+ 2eB . (7.53)

The spin anti-aligned states in the nonrelativistic (NR) limit reduce to5065

E−n |NR ≈ E+
n |NR +

eB

me
. (7.54)

This shift in energies is otherwise not influenced by summation over Landau quantum5066

number n, therefore we can interpret this energy shift as a shift in the polarization5067

potential from Eq. (7.22). The polarization potential is then5068

η±e = ηe ±
eB

2me
, (7.55)
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allowing us to rewrite the partition function in Eq. (7.32) as5069

lnZe− |NR =
eBV

(2π)2

±∑
s′

∞∑
n=0

∞∑
k=1

∫ +∞

−∞
dpz

(−1)k+1

k
2 cosh(kβηs

′

e )λk exp(−kϵn/T ) ,

(7.56)

ϵn = me +
p2z
2me

+
eB

2me
(n+ 1) . (7.57)

Eq. (7.56) is then the traditional NR quantum harmonic oscillator partition func-5070

tion with a spin dependant potential shift differentiating the aligned and anti-aligned5071

states. We note that in this formulation, the spin contribution is entirely excised5072

from the orbital contribution. Under Euler-Maclaurin integration, the now spin-5073

independent Boltzmann factor can be further separated into ‘free’ and Landau quan-5074

tum parts as was done in Eq. (7.30) for the relativistic case. We note however that5075

the inclusion of anomalous magnetic moment spoils this clean separation.5076

Electron-positron chemical potential5077

Considering the temperature after neutrino freeze-out, the charge neutrality condition5078

can be written as5079

(ne− − ne+) = np = Xp

(
nB
sγ,e

)
sγ,e, Xp ≡

np
nB

, (7.58)

where np and nB is the number density of protons and baryons respectively. The5080

parameter sγ,e is the entropy density which is primarily dominated by photons and5081

electron(positrons) in this era. Due to the adiabatic expansion of the universe, the5082

comoving entropy density is a conserved making the ratio5083

nB
sγ,e

= const. (7.59)

a constant which can be measured today from the entropy content of the CMB to-5084

day [27]. The proton-to-baryon ratio is slightly offset by the presence of neutrons.5085

In presence of a magnetic field in the Boltzmann approximation, the charge neu-5086

trality condition Eq. (7.21) and Eq. (7.58) becomes5087

sinh
µ

T
= np

π2

T 3

[ ±1∑
s′

ξs′

(
x2s′K2(xs′)+

b0
2
xs′K1(xs′)+

b20
12
K0(xs′)

)]−1
. (7.60)

Eq. (7.60) is fully determined by the right-hand-side expression if the polarization5088

fugacity is set to unity η = 0 implying no external bias to the number of polariza-5089

tions except as a consequence of the difference in energy eigenvalues. In practice, the5090

latter two terms in Eq. (7.60) are negligible to chemical potential in the bounds of5091

the primordial e+e− plasma considered and only becomes relevant for extreme (see5092

Fig. 63) magnetic field strengths well outside our scope.5093

Eq. (7.60) simplifies if there is no external magnetic field b0 = 0 into5094

sinh
µ

T
= np

π2

T 3

[
2 cosh

η

T

(me

T

)2
K2

(me

T

)]−1
. (7.61)

In Fig. 63 we plot the chemical potential µ/T in Eq. (7.60) and Eq. (7.61) which5095

characterizes the importance of the charged lepton asymmetry as a function of tem-5096

perature. Since the baryon (and thus charged lepton) asymmetry remains fixed, the5097
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𝑏0 = 25

𝑏0 = 50

Fig. 63. The chemical potential over temperature µ/T is plotted as a function of temperature
with differing values of spin potential η and magnetic scale b0. Published in Ref. [4] under
the CC BY 4.0 license. Adapted from Ref. [7]

suppression of µ/T at high temperatures indicates a large pair density which is seen5098

explicitly in Fig. 61. The black line corresponds to the b0 = 0 and η = 0 case.5099

The para-diamagnetic contribution from Eq. (7.49) does not appreciably influ-5100

ence µ/T until the magnetic scales involved become incredibly large well outside the5101

observational bounds defined in Eq. (7.1) and Eq. (7.6) as seen by the dotted blue5102

curves of various large values b0 = {25, 50, 100, 300}. The chemical potential is also5103

insensitive to forcing by the spin potential until η reaches a significant fraction of5104

the electron mass me in size. The chemical potential for large values of spin potential5105

η = {100, 200, 300, 400, 500} keV are also plotted as dashed black lines with b0 = 0.5106

It is interesting to note that there are crossing points where a given chemical5107

potential can be described as either an imbalance in spin-polarization or presence of5108

external magnetic field. While spin potential suppresses the chemical potential at low5109

temperatures, external magnetic fields only suppress the chemical potential at high5110

temperatures.5111

The profound insensitivity of the chemical potential to these parameters justifies5112

the use of the free particle chemical potential (black line) in the ranges of magnetic5113

field strength considered for cosmology. Mathematically this can be understood as ξ5114

and b0 act as small corrections in the denominator of Eq. (7.60) if expanded in powers5115

of these two parameters.5116

https://creativecommons.org/licenses/by/4.0/
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7.3 Relativistic paramagnetism of electron-positron gas5117

The total magnetic flux within a region of space can be written as the sum of external5118

fields and the magnetization of the medium via5119

Btotal = B +M . (7.62)

For the simplest mediums without ferromagnetic or hysteresis considerations, the5120

relationship can be parameterized by the susceptibility χ of the medium as5121

Btotal = (1 + χ)B , M = χB , χ ≡ ∂M
∂B

, (7.63)

with the possibility of both paramagnetic materials (χ > 1) and diamagnetic materials5122

(χ < 1). The e+e− plasma however does not so neatly fit in either category as given5123

by Eq. (7.48) and Eq. (7.49). In general, the susceptibility of the gas will itself be a5124

field dependant quantity.5125

In our analysis, the external magnetic field always appears within the context of5126

the magnetic scale b0, therefore we can introduce the change of variables5127

∂b0
∂B

=
e

T 2
. (7.64)

The magnetization of the e+e− plasma described by the partition function in Eq. (7.46)5128

can then be written as5129

M≡ T

V

∂

∂B
lnZe+e− =

T

V

(
∂b0
∂B

)
∂

∂b0
lnZe+e− , (7.65)

Magnetization arising from other components in the cosmic gas (protons, neutri-5130

nos, etc.) could in principle also be included. Localized inhomogeneities of matter5131

evolution are often non-trivial and generally be solved numerically using magneto-5132

hydrodynamics (MHD) [182,287,288] or with a suitable Boltzmann-Vlasov transport5133

equation. An extension of our work would be to embed magnetization into transport5134

theory [11]. In the context of MHD, primordial magnetogenesis from fluid flows in5135

the electron-positron epoch was considered in [289,290].5136

We introduce dimensionless units for magnetization M by defining the critical5137

field strength5138

BC ≡
m2

e

e
, M ≡ M

BC
. (7.66)

The scale BC is where electromagnetism is expected to become subject to non-linear5139

effects, though luckily in our regime of interest, electrodynamics should be linear.5140

We note however that the upper bounds of IGMFs in Eq. (7.1) (with b0 = 10−3; see5141

Eq. (7.6)) brings us to within 1% of that limit for the external field strength in the5142

temperature range considered.5143

The total magnetization M can be broken into the sum of magnetic moment5144

parallel M+ and magnetic moment anti-parallel M− contributions5145

M = M+ +M− . (7.67)

We note that the expression for the magnetization simplifies significantly for g=25146

which is the ‘natural’ gyro-magnetic factor [291,292] for Dirac particles. For illustra-5147
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tion, the g=2 magnetization from Eq. (7.65) is then5148

M+ =
e2

π2

T 2

m2
e

ξ cosh
µ

T

[
1

2
x+K1(x+) +

b0
6
K0(x+)

]
, (7.68)

−M− =
e2

π2

T 2

m2
e

ξ−1 cosh
µ

T

[(
1

2
+

b20
12x2−

)
x−K1(x−) +

b0
3
K0(x−)

]
, (7.69)

x+ =
me

T
, x− =

√
m2

e

T 2
+ 2b0 . (7.70)

As the g-factor of the electron is only slightly above two at g ≃ 2.00232 [281], the5149

above two expressions for M+ and M− are only modified by a small amount because5150

of anomalous magnetic moment (AMM) and would be otherwise invisible on our5151

figures.5152

Evolution of electron-positron magnetization5153

In Fig. 64, we plot the magnetization as given by Eq. (7.68) and Eq. (7.69) with the5154

spin potential set to unity ξ = 1. The lower (solid red) and upper (solid blue) bounds5155

for cosmic magnetic scale b0 are included. The external magnetic field strength B/BC5156

is also plotted for lower (dotted red) and upper (dotted blue) bounds. Since the deriva-5157

tive of the partition function governing magnetization may manifest differences be-5158

tween Fermi-Dirac and the here used Boltzmann limit more acutely, out of abundance5159

of caution, we indicate extrapolation outside the domain of validity of the Boltzmann5160

limit with dashes.5161

𝔐 𝑏0=10
−11

𝔐 𝑏0=10
−3ℬ ℬ𝐶 𝑏0=10

−11

ℬ ℬ𝐶 𝑏0=10
−3

𝔐 ≡
𝑒

𝑚𝑒
2ℳ

𝔐

Fig. 64. The magnetization M, with g=2, of the primordial e+e− plasma is plotted as a
function of temperature. Published in Ref. [4] under the CC BY 4.0 license. Adapted from
Ref. [1,7]

https://creativecommons.org/licenses/by/4.0/
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We see in Fig. 64 that the e+e− plasma is overall paramagnetic and yields a5162

positive overall magnetization which is contrary to the traditional assumption that5163

matter-antimatter plasma lack significant magnetic responses of their own in the5164

bulk. With that said, the magnetization never exceeds the external field under the5165

parameters considered which shows a lack of ferromagnetic behavior.5166

The large abundance of pairs causes the smallness of the chemical potential seen5167

in Fig. 63 at high temperatures. As the universe expands and temperature decreases,5168

there is a rapid decrease of the density ne± of e+e− pairs. This is the primary the5169

cause of the rapid paramagnetic decrease seen in Fig. 64 above T =21 keV. At lower5170

temperatures T < 21 keV there remains a small electron excess (see Fig. 61) needed5171

to neutralize proton charge. These excess electrons then govern the residual magne-5172

tization and dilutes with cosmic expansion.5173

An interesting feature of Fig. 64 is that the magnetization in the full temperature5174

range increases as a function of temperature. This is contrary to Curie’s law [283]5175

which stipulates that paramagnetic susceptibility of a laboratory material is inversely5176

proportional to temperature. However, Curie’s law applies to systems with fixed num-5177

ber of particles which is not true in our situation; see Sec. 7.3.5178

A further consideration is possible hysteresis as the e+e− density drops with tem-5179

perature. It is not immediately obvious the gas’s magnetization should simply ‘de-5180

gauss’ so rapidly without further consequence. If the very large paramagnetic suscep-5181

tibility present for T ≃ me is the origin of an overall magnetization of the plasma, the5182

conservation of magnetic flux through the comoving surface ensures that the initial5183

residual magnetization is preserved at a lower temperature by Faraday induced kinetic5184

flow processes however our model presented here cannot account for such effects.5185

Early universe conditions may also apply to some extreme stellar objects with5186

rapid change in ne± with temperatures above T =21 keV. Production and annihilation5187

of e+e− plasmas is also predicted around compact stellar objects [293,294] potentially5188

as a source of gamma-ray bursts.5189

Dependency on g-factor5190

As discussed at the end of Sec. 7.3, the AMM of e+e− is not relevant in the present5191

model. However out of academic interest, it is valuable to consider how magnetization5192

is effected by changing the g-factor significantly.5193

The influence of AMM would be more relevant for the magnetization of baryon5194

gasses since the g-factor for protons (g ≈ 5.6) and neutrons (g ≈ 3.8) are substantially5195

different from g=2. The influence of AMM on the magnetization of thermal systems5196

with large baryon content (neutron stars, magnetars, hypothetical bose stars, etc.) is5197

therefore also of interest [295,296].5198

Eq. (7.68) and Eq. (7.69) with arbitrary g reintroduced is given by5199
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T 2

m2
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where xs′ was previously defined in Eq. (7.47).5200

In Fig. 65, we plot the magnetization as a function of g-factor between 4 > g > −45201

for temperatures T ={511, 300, 150, 70} keV. We find that the magnetization is sensi-5202

tive to the value of AMM revealing a transition point between paramagnetic (M > 0)5203

and diamagnetic gasses (M < 0). Curiously, the transition point was numerically5204
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Fig. 65. The magnetization M as a function of g-factor plotted for several temperatures
with magnetic scale b0 = 10−3 and polarization fugacity ξ = 1. Published in Ref. [4] under
the CC BY 4.0 license. Adapted from Ref. [7]

determined to be around g ≃ 1.1547 in the limit b0 → 0. The exact position of this5205

transition point however was found to be both temperature and b0 sensitive, though5206

it moved little in the ranges considered.5207

It is not surprising for there to be a transition between diamagnetism and para-5208

magnetism given that the partition function (see Eq. (7.48) and Eq. (7.49)) contained5209

elements of both. With that said, the transition point presented at g ≈ 1.15 should5210

not be taken as exact because of the approximations used to obtain the above results.5211

It is likely that the exact transition point has been altered by our taking of the5212

Boltzmann approximation and Euler-Maclaurin integration steps. It is known that5213

the Klein-Gordon-Pauli solutions to the Landau problem in Eq. (7.4) have periodic5214

behavior [280,291,292] for |g| = k/2 (where k ∈ 1, 2, 3 . . .).5215

These integer and half-integer points represent when the two Landau towers of5216

orbital levels match up exactly. Therefore, we propose a more natural transition5217

between the spinless diamagnetic gas of g = 0 and a paramagnetic gas is g = 1.5218

A more careful analysis is required to confirm this, but that our numerical value is5219

close to unity is suggestive.5220

Magnetization per lepton5221

Despite the relatively large magnetization seen in Fig. 64, the average contribution5222

per lepton is only a small fraction of its overall magnetic moment indicating the5223

magnetization is only loosely organized. Specifically, the magnetization regime we are5224

in is described by5225

M≪ µB
Ne+ +Ne−

V
, µB ≡

e

2me
, (7.73)

where µB is the Bohr magneton andN = nV is the total particle number in the proper5226

volume V. To better demonstrate that the plasma is only weakly magnetized, we5227

https://creativecommons.org/licenses/by/4.0/


Will be inserted by the editor 193

define the average magnetic moment per lepton given by along the field (z-direction)5228

axis as5229

|m⃗|z ≡
M

ne− + ne+
, |m⃗|x = |m⃗|y = 0 . (7.74)

Statistically, we expect the transverse expectation values to be zero. We emphasize5230

here that despite |m⃗|z being nonzero, this doesn’t indicate a nonzero spin angular mo-5231

mentum as our plasma is nearly matter-antimatter symmetric. The quantity defined5232

in Eq. (7.74) gives us an insight into the microscopic response of the plasma.5233

Fig. 66. The magnetic moment per lepton |m⃗|z along the field axis as a function of tem-
perature. Published in Ref. [7] under the CC BY 4.0 license

The average magnetic moment |m⃗|z defined in Eq. (7.74) is plotted in Fig. 66 which5234

displays how essential the external field is on the ‘per lepton’ magnetization. The5235

b0 = 10−3 case (blue curve) is plotted in the Boltzmann approximation. The dashed5236

lines indicate where this approximation is only qualitatively correct. For illustration, a5237

constant magnetic field case (solid green line) with a comoving reference value chosen5238

at temperature T0 = 10 keV is also plotted.5239

If the field strength is held constant, then the average magnetic moment per5240

lepton is suppressed at higher temperatures as expected for magnetization satisfying5241

Curie’s law. The difference in Fig. 66 between the non-constant (blue solid curve) case5242

and the constant field (solid green curve) case demonstrates the importance of the5243

conservation of primordial magnetic flux in the plasma, required by Eq. (7.5). While5244

not shown, if Fig. 66 was extended to lower temperatures, the magnetization per5245

lepton of the constant field case would be greater than the non-constant case which5246

agrees with our intuition that magnetization is easier to achieve at lower temperatures.5247

https://creativecommons.org/licenses/by/4.0/
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This feature again highlights the importance of flux conservation in the system and5248

the uniqueness of the primordial cosmic environment.5249

7.4 Polarization potential and ferromagnetism5250

Up to this point, we have neglected the impact that a nonzero spin potential η ̸= 05251

(and thus ξ ̸= 1) would have on the primordial e+e− plasma magnetization. In the5252

limit that (me/T )
2 ≫ b0 the magnetization given in Eq. (7.71) and Eq. (7.72) is5253

entirely controlled by the polarization fugacity ξ asymmetry generated by the spin5254

potential η yielding up to first order O(b0) in magnetic scale5255
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(7.75)

Given Eq. (7.75), we can understand the spin potential as a kind of ‘ferromagnetic’5256

influence on the primordial gas which allows for magnetization even in the absence5257

of external magnetic fields. This interpretation is reinforced by the fact the leading5258

coefficient is g/2. We suggest that a variety of physics could produce a small nonzero5259

η within a domain of the gas. Such asymmetries could also originate statistically as5260

while the expectation value of free gas polarization is zero, the variance is likely not.5261

As sinh η/T is an odd function, the sign of η also controls the alignment of the5262

magnetization. In the high temperature limit Eq. (7.75) with strictly b0 = 0 assumes5263

a form of to lowest order for brevity5264

lim
me/T→0

M|b0=0 =
g

2

e2

π2

T 2

m2
e

η

T
, (7.76)

While the limit in Eq. (7.76) was calculated in only the Boltzmann limit, it is5265

noteworthy that the high temperature (andm→ 0) limit of Fermi-Dirac distributions5266

only differs from the Boltzmann result by a proportionality factor. The natural scale of5267

the e+e− magnetization with only a small spin fugacity (η < 1 eV) fits easily within5268

the bounds of the predicted magnetization during this era if the IGMF measured5269

today was of primordial origin. The reason for this is that the magnetization seen in5270

Eq. (7.68), Eq. (7.69) and Eq. (7.75) are scaled by αBC where α is the fine structure5271

constant.5272

Hypothesis of ferromagnetic self-magnetization5273

One exploratory model we propose is to fix the spin polarization asymmetry, de-5274

scribed in Eq. (7.22), to generate a homogeneous magnetic field which dissipates as5275

the universe cools down. In this model, there is no external primordial magnetic field5276

(BPMF = 0) generated by some unrelated physics, but rather the e+e− plasma itself5277

is responsible for the field by virtue of spin polarization.5278

This would obey the following assumption of5279

M(b0) =
M(b0)

BC
←→ B

BC
= b0

T 2

m2
e

, (7.77)

which sets the total magnetization as a function of itself. The spin polarization de-5280

scribed by η → η(b0, T ) then becomes a fixed function of the temperature and mag-5281

netic scale. The underlying assumption would be the preservation of the homogeneous5282
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Fig. 67. The spin potential η and chemical potential µ are plotted under the assumption
of self-magnetization through a nonzero spin polarization in bulk of the plasma. Published
in Ref. [7] under the CC BY 4.0 license

field would be maintained by scattering within the gas (as it is still in thermal equi-5283

librium) modulating the polarization to conserve total magnetic flux.5284

The result of the self-magnetization assumption in Eq. (7.77) for the potentials is5285

plotted in Fig. 67. The solid lines indicate the curves for η/T for differing values of5286

b0 = {10−11, 10−7, 10−5, 10−3} which become dashed above T =300 keV to indicate5287

that the Boltzmann approximation is no longer appropriate though the general trend5288

should remain unchanged.5289

The dotted lines are the curves for the chemical potential µ/T . At high temper-5290

atures we see that a relatively small η/T is needed to produce magnetization owing5291

to the large densities present. Fig. 67 also shows that the chemical potential does not5292

deviate from the free particle case until the spin polarization becomes sufficiently high5293

which indicates that this form of self-magnetization would require the annihilation of5294

positrons to be incomplete even at lower temperatures.5295
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Fig. 68. The number density ne± of polarized electrons and positrons under the self-
magnetization model for differing values of b0. Published in Ref. [7] under the CC BY 4.0
license

This is seen explicitly in Fig. 68 where we plot the numerical density of particles5296

as a function of temperature for spin aligned (+η) and spin anti-aligned (−η) species5297

for both positrons (−µ) and electrons (+µ). Various self-magnetization strengths5298

are also plotted to match those seen in Fig. 67. The nature of Tsplit changes under5299

this model since antimatter and polarization states can be extinguished separately.5300

Positrons persist where there is insufficient electron density to maintain the magnetic5301

flux. Polarization asymmetry therefore appears physical only in the domain where5302

there is a large number of matter-antimatter pairs.5303

Matter inhomogeneities in the cosmic plasma5304

In general, an additional physical constraint is required to fully determine µ and η5305

simultaneously as both potentials have mutual dependency (see Sec. 7.4). We note5306

that spin polarizations are not required to be in balanced within a single species to5307

preserve angular momentum.5308

The CMB [37] indicates that the early universe was home to domains of slightly5309

higher and lower baryon densities which resulted in the presence of galactic super-5310

clusters, cosmic filaments, and great voids seen today. However, the CMB, as mea-5311

sured today, is blind to the localized inhomogeneities required for gravity to begin5312

galaxy and supermassive black hole formation.5313

Such acute inhomogeneities distributed like a dust [8] in the plasma would make5314

the proton density sharply and spatially dependant np → np(x) which would directly5315

affect the potentials µ(x) and η(x) and thus the density of electrons and positrons5316

locally. This suggests that e+e− may play a role in the initial seeding of gravitational5317

collapse. If the plasma were home to such localized magnetic domains, the nonzero5318

local angular momentum within these domains would provide a natural mechanism5319

for the formation of rotating galaxies today.5320
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Recent measurements by the James Webb Space Telescope (JWST) [297,298,299]5321

indicate that galaxy formation began surprisingly early at large redshift values of z ≳5322

10 within the first 500 million years of the universe requiring gravitational collapse to5323

begin in a hotter environment than expected. The observation of supermassive black5324

holes already present [300] in this same high redshift period (with millions of solar5325

masses) indicates the need for local high density regions in the early universe whose5326

generation is not yet explained and likely need to exist long before the recombination5327

epoch.5328

8 Discussion and Summary5329

We have presented a compendium of theoretical models addressing the particle and5330

plasma content of the primordial Universe. The Universe at a temperature above5331

10 keV is dominated by ‘visible’ matter, dependence on unknown dark matter and5332

dark energy is minimal. However any underlying dark component will later surface,5333

thus the understanding of this primordial epoch also as a source of darkness (including5334

neutrinos background) in the present day Universe is among our objectives.5335

Select introductory material addressing kinetic theory, statistical physics, and gen-5336

eral relativity has been presented. Kinetic and plasma theory is described in greater5337

detail. Einstein’s gravity theory found in many other sources is limited to the min-5338

imum required in the study of the primordial Universe within the confines of the5339

FLRW cosmology model.5340

In this work we are connecting several of our prior and ongoing studies of the5341

cosmic particle plasma in the primordial Universe. The three primary eras: radiation,5342

matter, dark energy dominance, can be recognized in terms of the acceleration pa-5343

rameter q. We introduce this tool in the cosmology primer Sec. 1.3 connecting these5344

distinct epochs smoothly in Sec. 1.4. Detailed results concerning time and tempera-5345

ture relation allowing for the reheating of the Universe were shown. Entropy transfer5346

(reheating) inflates the Universe expansion whenever ambient temperature is too low5347

to support the massive particle abundance.5348

In detailed studies we explored particle abundances and plasma properties which5349

improve our comprehensive understanding of the Universe in its evolution. Many in-5350

teresting phenomena in the primordial Universe depend on nonequilibrium conditions5351

and this topic is at the core of our theoretical interest. Nuance differences between5352

kinetic and chemical equilibrium, dynamic but stationary detailed balance and non-5353

stationary phenomena recur as topics of interest in our discussion.5354

One important aspect of the hot primordial Universe is the experimental access in5355

ultra relativistic heavy-ion collision experiments to the process of melting of matter5356

into constituent quarks at high enough temperature. The idea that one could recreate5357

this Big-Bang condition in laboratory was the beginning of the modern interest in5358

better understanding the structure of the primordial Universe. We do not address5359

here the ensuing and very large volume of still ongoing research work.5360

However, we recalled the 50 years of effort which begun with the recognition5361

of novel structure in the primordial Universe beyond the Hagedorn temperature, and5362

the exploration of this high temperature deconfined quark-gluon phase. Moreover, the5363

study of the phase transformation between confined hadrons and deconfined quark-5364

gluon plasma in laboratory facilitates the understanding of the primordial Universe5365

dating to the earliest instants after its birth, about 20-30µs after the Big-Bang. The5366

question, how can we recognize the quark-gluon plasma observed in laboratory to be5367

different from the hadron Universe content was mentioned.5368

The experimental study in the laboratory of the dynamic micro-bang stimulates5369

development of detailed models of the strongly interacting hadron era of the Universe.5370
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We use some of the tools created for laboratory experiment interpretation to study5371

properties of hadronic matter in the Universe and strangeness flavor freeze-out in5372

particular in Sec. 2.4.5373

For bottom quarks in Sec. 2.3 we recognize in detail the deviations from thermal5374

equilibrium, particle freeze-out, and detailed balance away from the thermal equi-5375

librium condition and isolate the non-stationary components. These nonequilibrium5376

concepts developed for more esoteric purpose are pivotal in our opinion in recognizing5377

any remnant observable of the primordial Universe.5378

These kinetic and dynamic insights drive our interest leading beyond our interest5379

in strangeness and bottom quarks to all heavy PP-SM particles. We question the5380

potential that primordial QGP era harbors opportunity for baryogenesis, we look5381

both for the bottom quarks and the Higgs particle induced reactions, Sec. 2.1. This5382

work will continue.5383

The different epochs in the Universe evolution are often considered as being dis-5384

tinctly separate. However, we have shown that this is not always the case. We note5385

the ‘squeeze’ of neutrino decoupling between: The electron-positron annihilation re-5386

heating of photons at the low temperature edge at about T = 1MeV; and heavy5387

lepton (muon) disappearance on the high-T edge at about T = 4.5MeV.5388

This fine-tuning into a narrow available domain prompted our investigation of5389

neutrino decoupling as a function of the magnitude of the governing natural constants.5390

This characterization of neutrino freeze-out constrains the time variation of natural5391

constants. We present in Appendix B a novel computationally efficient moving-frame5392

numerical method we developed to obtain required results.5393

Our in depth study of the neutrino background shows future potential to reconcile5394

observational tensions that arise between the reported present day speed of Universe5395

expansion H0 (Hubble parameter in present epoch) and extrapolations from the re-5396

combination epoch. One can question howH0 could depend on a better understanding5397

of the dynamics of the free-streaming quantum neutrinos across mass thresholds. We5398

recently laid relevant theoretical foundation allowing to develop further this very5399

intricate topic [301].5400

In Sec. 3.2 we provided background on the Boltzmann-Einstein equation, includ-5401

ing proofs of the conservation laws and the Boltzmann’s H-theorem for interactions5402

between any number of particles; this is of interest as the evolution of the Universe5403

often requires detailed balance involving more than two particle scattering. To our5404

knowledge, proof for general numbers m, n with m → n-particle interactions is not5405

available in other references on the subject.5406

Following on the neutrino decoupling we encounter in the temporal evolution of5407

the Universe another example of two era overlap, this time potentially much more5408

consequential: The era of electron-positron pair plasma annihilation begins immediate5409

after neutrino decoupling and yet the primordial nucleosynthesis at a temperature5410

that is 15 times lower proceeds amidst a dense e+e−-pair plasma background, which5411

fades out well after BBN ends.5412

This effect is clearly visible but maybe is not fully appreciated when inspecting5413

in Fig. 1.1: We see that the line for the e+e−-component is a “small” e+e−-energy5414

fraction during the marked BBN epoch. It seems that the e+e−-pair plasma is in pro-5415

cess of disappearance and does not matter. This is, however, a wrong first impression:5416

The e+e−-energy fraction is starting with a giant 109 pair ratio over nucleon dust.5417

Dropping by three orders of magnitude there remains a huge e+e−-pair abundance5418

left with millions of pairs per each nucleon at the onset of the BBN era.5419

We studied the ratio of e+e−-pair abundance to baryon number in detail in Fig. 615420

(see also Fig. 42 right ordinate): As a curious tidbit let us note that as long as there5421

are more than a few thousand e+e−-pairs per nucleon the antimatter content in the5422

universe is practically symmetric with the matter content in any applicable measure.5423
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The nuclear dust is not tilting the balance as matter are electrons and antimatter5424

are positrons. Thus it is not entirely correct to consider the disappearance of of5425

antibaryons, see Fig. 19, at T ≃ 38.2MeV as the end of antimatter epoch. It is instead5426

correct to view the temperature T = 30 keV as the onset of antimatter disappearance5427

which completes at T = 20.3 keV as is seen in Fig. 61.5428

Investigation of the dense charged particle plasma background during BBN con-5429

stitutes a major part of this work. In Sec. 5 we develop a covariant kinetic plasma5430

theory to analyze the influence of e+e−-pair plasma polarization. We solve the dy-5431

namic phase space equations using linear response method considering both spatial5432

and temporal dispersion. We are focusing our attention on the understanding how5433

the covariant polarization tensor, which includes collisional damping, shapes the self-5434

consistent electromagnetic fields within the medium. This approach allows us to elu-5435

cidate the intricate dynamics introducing QED damping effects that characterize the5436

behavior of the e+e−-pair plasma.5437

We explore the damped-dynamic screening effects between reacting nucleons and5438

light elements in e+e−-pair plasma during the Big-Bang Nucleosynthesis (BBN). Our5439

results indicate that the in plasma screening can modify inter nuclear potentials5440

and thus also nuclear fusion reaction rates in an important manner. However, the5441

effect during the accepted BBN temperature range is found to remain a minor cor-5442

rection to the usually used effective screening enhancement. Despite the significant5443

perturbatively evaluated damping, and high temperatures characteristic of BBN, the5444

enhancement in nuclear reaction rates remains relatively small, around 10−5, yet it5445

provides a valuable refinement to our understanding of the early universe’s conditions.5446

We also show a very significant impact of nonp-erturbative self-consistent evaluation5447

of damping in Sec. 4.2. We have not yet had an opportunity to explore how the non-5448

perturbative damping impacts BBN epoch fusion rates.5449

Extending our analysis to QGP in Sec. 6, we particularly examine the magnetic5450

field response under ultra relativistic conditions during heavy-ion collisions. By em-5451

ploying various conductivity models, we demonstrate that the conductivity evaluated5452

on the light-cone effectively describes the evolution of magnetic fields within the QGP.5453

This insight leads us to derive an analytic formula that predicts the freeze-out mag-5454

netic field that govern the micro-bang in the laboratory, potentially enabling exper-5455

imental determination of the QGP’s electromagnetic conductivity—a key parameter5456

in understanding the plasma’s properties during these extreme events.5457

The long lasting (in relative terms) antimatter e+e−-pair plasma offers an op-5458

portunity to consider a novel mechanism of magneto-genesis in primordial Universe:5459

Extrapolating the intergalactic fields observed in the current era back in time to the5460

e+e−-pair plasma era, magnetic field strengths are encountered which approach the5461

strength of the surface magnetar fields Sec. 7.1.5462

This has prompted our interest to study the primordial e+e−-pair plasma as the5463

source of Universe magnetization. We studied the temperature range of 2000 keV to5464

20 keV where all of space was filled with a hot dense electron-positron plasma (up to5465

450 million pairs per baryon) still present in primordial Universe within the first few5466

minutes after the Big-Bang. We note that our chosen period also includes the BBN5467

era.5468

We found that subject to a primordial magnetic field, the early universe electron-5469

positron plasma has a significant paramagnetic response, see Fig. 64 due to mag-5470

netic moment polarization. We considered the interplay of charge chemical potential,5471

baryon asymmetry, anomalous magnetic moment, and magnetic dipole polarization on5472

the nearly homogeneous medium. We presented a simple model of self-magnetization5473

of the primordial electron-positron plasma which indicates that only a small polariza-5474

tion asymmetry is required to generate significant magnetic flux when the universe5475

was very hot and dense.5476
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Our novel approach to high temperature magnetization, see Chapter 7 shows that5477

the e+e−-plasma paramagnetic response (see Eq. (7.68) and Eq. (7.69)) is dominated5478

by the varying abundance of electron-positron pairs, decreasing with decreasing T for5479

T <mec
2. This is unlike conventional laboratory cases where the magnetic properties5480

emerge with the number of magnetic particles being constant. As the number of pairs5481

depletes while the universe cools the electron-positron spin magnetization clearly5482

cannot be maintained. However, once created magnetic fields want to persist. How5483

the transit from Gilbertian to Amperian magnetism proceeds will be topic of future5484

investigation: This presents an opportunity for understanding formation of space-5485

time persistent induced currents helping to facilitate magnetic and potentially matter5486

inhomogeneity in the primordial Universe.5487

Outside of the scope of our report we can also check for era overlaps at tem-5488

perature below 10 keV: Inspecting Fig. 1.1 one can wonder about the coincidental5489

multiple crossing of different visible energy components in the Universe seen near5490

to T = 0.25meV. This means at condition of recombination there is an unexpected5491

component coincidence. This special situation depends directly on the interpretation5492

of our current era in terms of specific matter and darkness components. The analy-5493

sis of cosmic background microwave (CBM) data which underpins this, is not retold5494

here. However, the present day conditions propagate on to the primordial times in5495

the particles and plasma Universe and provide for the era overlaps we reported in5496

regard of earlier eras.5497

Sceptics could interpret the appearance of several such coincidences as indicative5498

of a situation akin to pre-Copernican epicycles. Are we seeing odd ‘orbits’ because5499

we do not use the ‘solar’ centered model? We note that current standard model of5500

cosmology is being challenged by Fulvio Melia [302] “One cannot avoid the conclusion5501

that the standard model needs a complete overhaul in order to survive.” or by the5502

same author [303] “. . . the timeline in ΛCDM is overly compressed at z ≥ 6, while5503

strongly supporting the expansion history in the early Universe predicted by. . . ” the5504

Melia model of cosmology.5505

This well could be the case. However, we believe that in order to argue for or5506

against different models of primordial cosmology we need first to establish the Uni-5507

verse particles and plasma model properties very well as we presented in coherent5508

fashion for the first time in the wide 130GeV ≤ T ≤ 10 keV range. Without this any5509

declarations about the cosmological context of particles and plasma Universe based on5510

a few atomic, molecular, stellar phenomena observed at in comparison tiniest imag-5511

inable redshift z = 6 ≃ 7 are not compelling. Similarly we view with some hesitance5512

the many hypothesis about the properties of the Universe prior to the formation of5513

the PP-SM particles with properties we have explored in laboratory.5514

Search to understand grand properties of the Universe without understanding is5515

particle and plasma content has much longer historical backdrop which we noted5516

and which had to evolve: Before about year 1971 there was no inkling about particle5517

physics standard model, we were searching to understand the primordial Universe5518

based on a thermal hadron model. Hagedorn’s bootstrap approach [32] was partic-5519

ularly welcome as the exponential mass spectrum of hadronic resonances generated5520

divergent energy density for point-sized hadrons. This well known result allowed the5521

hypothesis that there is a maximum (Hagedorn) temperature in the Universe.5522

This argument had excellent and convincing footing and yet it was not lasting:5523

We needed to accommodate the energy content we observe in the infinite Universe. A5524

divergence of energy at a singular starting point converts to a divergence, inflation in5525

space size. However, as soon as experiments in laboratory clarified our understanding5526

of fundamental particle physics, this narrative collapsed within weeks as one of us (JR)5527

saw in late 70’s at CERN working with Hagedorn in his office long hours developing5528

non-divergent models of hadrons.5529
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The outcome of more than 50 years of ensuing effort is seen in these pages, and yet5530

with certainty this is just a tip of an iceberg. We presented here the Universe within5531

the realm of the known laws of physics. There are many ‘loose’ ends as the reader5532

will note turning pages, we show and tell clearly about any and all we recognize.5533

We cannot tell as yet what happened ‘before’ our PP-SM begins at T ≃ 130GeV.5534

Many further key dynamic details characterizing evolution before recombination at5535

T = 0.25 eV need to be resolved. The particles and plasma Universe based on PP-SM5536

spans a 12 orders of magnitude temperature window 130GeV > T > 0.25 eV. And,5537

there is the challenge to understand the ensuing atomic and molecular Universe which5538

presents another challenge we did not mention. We believe that there is a lot more5539

work to do which will be much helped by gaining better insights into the riddles of5540

the present day Universe dynamics.5541
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A Geometry Background: Volume Forms on Submanifolds5542

In this appendix we develop the geometric machinery which will be used to derive com-5543

putationally efficient formulas for the scattering integrals. This facilitates the study5544

of the neutrino freeze-out using the Boltzmann-Einstein equation in Section 3.4. This5545

appendix is much more mathematical than the main text and, when standard, we use5546

geometrical language and notation here without further explanation; see, e.g., [304,5547

305,114]. We found this formalism to be useful for our development of an improved5548

method for computing scattering integrals, as presented in Appendix C. However, if5549

one is content with simply using the results then this appendix is non-essential. See5550

also [19].5551

A.1 Inducing Volume Forms on Submanifolds5552

Given a Riemannian manifold (M, g) with volume form dVg and a hypersurface S,5553

the standard Riemannian hypersurface area form, dAg, is defined on S as the volume5554

form of the pullback metric tensor on S. Given vectors v1, ..., vk we define the interior5555

product (i.e. contraction) operator acting on a form ω of degree n ≥ k as the n − k5556

form5557

i(v1,...,vk)ω = ω(v1, ..., vk, ·) . (A.1)

With this notation, the hypersurface area form can equivalently be computed as5558

dAg = ivdVg , (A.2)

where v is a unit normal vector to S. This method extends to submanifolds of codi-5559

mension greater than one as well as to semi-Riemannian manifolds, as long as the5560

metric restricted to the submanifold is non-degenerate.5561

However, there are many situations where one would like to define a natural5562

volume form on a submanifold that is induced by a volume form in the ambient5563

space, but where the above method is inapplicable, such as defining a natural volume5564

form on the light cone or other more complicated degenerate submanifolds in general5565

relativity. In this section, we will describe a method for inducing volume forms on5566

regular level sets of a function that is applicable in cases where there is no metric5567

structure and show its relation to more widely used semi-Riemannian case. We prove5568

analogues of the coarea formula and Fubini’s theorem in this setting.5569

LetM , N be smooth manifolds, c be a regular value of a smooth function F :M →5570

N , and ΩM and ΩN be volume forms on M and N respectively. Using this data, we5571

will be able to induce a natural volume form on the level set F−1(c). The absence of5572

a metric on M is made up for by the additional information that the function F and5573

volume form ΩN on N provide. The following theorem makes our definition precises5574

and proves the existence and uniqueness of the induced volume form.5575

Theorem 1 Let M , N be m (resp. n)-dimensional smooth manifolds with volume5576

forms ΩM (resp. ΩN ). Let F :M → N be smooth and c be a regular value. Then there5577

is a unique volume form ω (also denoted ωM ) on F−1(c) such that ωx = i(v1,...,vn)Ω
M
x5578

whenever vi ∈ TxM are such that5579

ΩN (F∗v1, ..., F∗vn) = 1 . (A.3)

We call ω the volume form induced by F : (M,ΩM )→ (N,ΩN ).5580
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Proof F∗ is onto TF (x)N for any x ∈ F−1(c). Hence there exists {vi}n1 ⊂ TxM5581

such that ΩN (F∗v1, ..., F∗vn) = 1. In particular, F∗vi is a basis for TF (x)N . Define5582

ωx = i(v1,...,vn)Ωx. This is obviously a nonzero m − n form on TxF
−1(c) for each5583

x ∈ F−1(c). We must show that this definition is independent of the choice of vi and5584

the result is smooth.5585

Suppose F∗vi and F∗wi both satisfy Eq. (A.3). Then F∗vi = Aj
iF∗wj for A ∈5586

SL(n). Therefore vi −Aj
iwj ∈ kerF∗x. This implies5587

i(v1,...,vn)Ω
M
x = ΩM

x (Aj1
1 wj1 , ..., A

jn
n wjn , ·) (A.4)

since the terms involving kerF∗ will vanish on TxF
−1(c) = kerF∗x. Therefore5588

i(v1,...,vn)Ω
M
x = Aj1

1 ...A
jn
n Ω

M
x (wj1 , ..., wjn , ·) (A.5)

=
∑
σ∈Sn

π(σ)A
σ(1)
1 ...Aσ(n)

n ΩM
x (w1, ..., wn, ·)

= det(A)i(w1,...,wn)Ω
M
x

= i(w1,...,wn)Ω
M
x .

This proves that ω is independent of the choice of vi. If we can show ω is smooth5589

then we are done. We will do better than this by proving that for any vi ∈ TxM the5590

following holds5591

i(v1,...,vn)Ω
M
x = ΩN (F∗v1, ..., F∗vn)ωx . (A.6)

To see this, take wi satisfying Eq. (A.3). Then F∗vi = Aj
iF∗wj . This determinant can5592

be computed from5593

ΩN (F∗v1, ..., F∗vn) = det(A)ΩN (F∗w1, ..., F∗wn) = det(A) . (A.7)

Therefore, the same computation as Eq. (A.5) gives5594

i(v1,...,vn)Ω
M
x = det(A)ωx = ΩN (F∗v1, ..., F∗vn)ωx (A.8)

as desired. To prove that ω is smooth, take a smooth basis of vector fields {Vi}m1 in a5595

neighborhood of x. After relabeling, we can assume {F∗Vi}n1 are linearly independent5596

at F (x) and hence, by continuity, they are linearly independent at F (y) for all y in5597

some neighborhood of x. In that neighborhood, ΩN (F∗V1, ..., F∗Vn) is non-vanishing5598

and therefore5599

ω = (ΩN (F∗V1, ..., F∗Vn))
−1i(V1,...,Vn)Ω (A.9)

which is smooth.5600

Corollary 1 For any vi ∈ TxM the following holds5601

i(v1,...,vn)Ω
M
x = ΩN (F∗v1, ..., F∗vn)ωx . (A.10)

Corollary 2 If ϕ : M → R is smooth and c is a regular value then by equipping R5602

with its canonical volume form we have5603

ωx = ivΩ
M
x , (A.11)

where v ∈ TxM is any vector satisfying dϕ(v) = 1.5604
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It is useful to translate Eq. (A.10) into a form that is more readily applicable5605

to computations in coordinates. Choose arbitrary coordinates yi on N and write5606

ΩN = hN (y)dyn. Choose coordinates xi on M such that F−1(c) is the coordinate5607

slice5608

F−1(c) = {x : x1 = ... = xn = 0} (A.12)

and write ΩM = hM (x)dxm. The coordinate vector fields ∂xi are transverse to F−1(c)5609

and so5610

ΩN (F∗∂x1 , ..., F∗∂xn) = hN (F (x)) det

(
∂F i

∂xj

)
i,j=1..n

(A.13)

and5611

i(∂x1 ,...,∂xn )Ω
M = hM (x)dxn+1...dxm . (A.14)

Therefore we obtain5612

ωx =
hM (x)

hN (F (x))
det

(
∂F i

∂xj

)−1
i,j=1..n

dxn+1...dxm . (A.15)

Just like in the (semi)-Riemannian case, the induced measure allows us to prove5613

a coarea formula where we break integrals over M into slices. In this theorem and5614

the remainder of the section, we consider integration with respect to the density5615

defined by any given volume form, i.e., we ignore the question of defining consistent5616

orientations.5617

Theorem 2 (Coarea formula) Let M be a smooth manifold with volume form5618

ΩM , N a smooth manifold with volume form ΩN and F :M → N be a smooth map.5619

If F∗ is surjective at a.e. x ∈M then for f ∈ L1(ΩM )
⋃
L+(M) we have5620 ∫

M

f(x)ΩM (dx) =

∫
N

∫
F−1(z)

f(y)ωM
z (dy)ΩN (dz) , (A.16)

where ωM
z is the volume form induced on F−1(z) as in Lemma 1.5621

Proof First suppose F is a submersion. By the rank theorem there exists a countable5622

collection of charts (Ui, Φi) that coverM and corresponding charts (Vi, Ψi) on N such5623

that5624

Ψi ◦ F ◦ Φ−1i (y1, ..., ym−n, z1, ..., zn) = (z1, ..., zn) . (A.17)

Let σi be a partition of unity subordinate to Ui. For each i and z we have Φi(Ui ∩5625

F−1(z)) = (Rm−n × {Ψi(z)}) ∩ Φi(Ui). We can assume that the Φi(Ui) = U1
i × U2

i ⊂5626

Rm−n × Rn and therefore each Φi is a slice chart for F−1(z) for all y such that5627

F−1(z) ∩ Ui ̸= ∅. In other words, Φi(Ui ∩ F−1(z)) = U1
i × {Ψ(z)}. This lets us5628

compute the left and right hand sides of Eq. (A.16) for f ∈ L+(M):5629 ∫
M

f(x)ΩM (dx) =
∑
i

∫
Ui

(σif)(x)Ω
M (dx) (A.18)

=
∑
i

∫
Φi(Ui)

(σif) ◦ Φ−1(y, z)Φ−1∗ΩM (dy, dz)

=
∑
i

∫
Φi(Ui)

(σif) ◦ Φ−1(y, z)|gM (y, z)|dym−ndzn

=
∑
i

∫
U2

i

[∫
U1

i

(σif) ◦ Φ−1(y, z)|gM (y, z)|dym−n
]
dzn

where ΩM = gMdy1 ∧ ... ∧ dym−n ∧ dz1 ∧ ... ∧ dzn ,
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and5630 ∫
N

∫
F−1(z)

f(y)ωM
z (dy)ΩN (dz) (A.19)

=
∑
i

∫
N

[∫
Φi(Ui∩F−1(z))

(σif) ◦ Φ−1i (y, Ψ(z))Φ−1∗i ωM
z (dy)

]
ΩN (dz)

=
∑
i

∫
Vi

[∫
Φi(Ui∩F−1(z))

(σif) ◦ Φ−1i (y, Ψ(z))Φ−1∗i ωM
z (dy)

]
ΩN (dz)

=
∑
i

∫
Ψi(Vi)

[∫
Φi(Ui∩F−1(Ψ−1(z))

(σif) ◦ Φ−1i (y, z)Φ−1∗i ωM
z (dy)

]
Ψ−1∗ΩN (dz)

=
∑
i

∫
U2

i

[∫
U1

i ×{z}
(σif) ◦ Φ−1i (y, z)|gMz (y)|dym−n

]
|gN (z)|dzn ,

where ωM
z = gMz dy1 ∧ ... ∧ dym−n and ΩN = gNdz1 ∧ ... ∧ dzn for gM1 , gN > 0 .

Therefore, if we can show |gM (y, z)| = |gMz (y)gN (z)| on U1
i × U2

i we are done. From5631

Corollary 1 we have5632

(−1)n(m−n)gM (y, z) (A.20)

=ΩM (∂z1 , ..., ∂zn , ∂y1 , ..., ∂ym−n) = ΩN (F∗∂zn , ..., F∗∂zn)gMz (y) .

Since Ψ ◦F ◦Φ−1 = π2 we have F∗∂zj = ∂zj and so ΩN (F∗∂zn , ..., F∗∂zn) = gN which5633

completes the proof in the case where F is a submersion. The generalization to the5634

case where F∗ is surjective a.e. follows from Sard’s theorem and the fact that the set5635

of x ∈M at which F∗ is surjective is open.5636

Comparison to Riemannian Coarea Formula5637

We now recall the classical coarea formula for semi-Riemannian metrics, see, e.g.,5638

[306], and give its relation to Theorem 2.5639

Definition 1 Let F : (M, g) → (N,h) be a smooth map between semi-Riemannian5640

manifolds. The normal Jacobian of F is5641

NJF (x) = |det(F∗|x(F∗|x)T )|1/2 , (A.21)

where (F∗|x)T denotes the adjoint map TxN → TxM obtained pointwise from the5642

pullback T ∗N → T ∗M combined with the tangent-cotangent bundle isomorphisms5643

defined by the metrics.5644

Lemma 1 The normal Jacobian has the following properties.5645

– (F∗|x)T : TF (x)N → (kerF∗|x)⊥.5646

– If F∗|x is surjective then (F∗|x)T is 1-1.5647

– In coordinates5648

NJF (x) =

∣∣∣∣det(hik(F (x))∂F k

∂xl
(x)glm(x)

∂F j

∂xm
(x)

)∣∣∣∣1/2 . (A.22)

– If F∗|x is surjective and g is nondegenerate on kerF∗|x then F∗|x(F∗|x)T is in-5649

vertible.5650
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– If c ∈ N is a regular value of F and g is nondegenerate on F−1(c) then NJF (x)5651

is non-vanishing and smooth on F−1(c).5652

Combining these lemmas with the rank theorem, one can prove the standard5653

semi-Riemannian coarea formula5654

Theorem 3 (Coarea formula) Let F : (M, g) → (N,h) be a smooth map between5655

semi-Riemannian manifolds such that F∗ is surjective at a.e. x ∈M and g is nonde-5656

generate on F−1(c) for a.e c ∈ N . Then for ϕ ∈ L1(dVg) we have5657 ∫
M

ϕ(x)dVg =

∫
y∈N

∫
x∈F−1(y)

ϕ(x)

NJF (x)
dAgdVh , (A.23)

where dAg is the volume measure induced on F−1(y) by pulling back the metric g. In5658

particular, if N = R with its canonical metric then NJF = |∇F | and5659 ∫
M

ϕdVg =

∫
R

∫
F−1(r)

ϕ(x)

|∇F (x)|
dAgdr . (A.24)

The relation between the Riemannian coarea formula and Theorem 2 follows from5660

the following theorem.5661

Theorem 4 Let F : (M, g) → (N,h) be a smooth map between semi-Riemannian5662

manifolds and c be a regular value. Suppose g is nondegenerate on F−1(c). Let ω be5663

the volume form on F−1(c) induced by F : (M,dVg)→ (N, dVh). Then5664

ω = NJF−1dAg (A.25)

as densities.5665

Proof By Corollary 1, for any vi ∈ TxM we have5666

i(v1,...,vn)Ω
M
x = dVh(F∗v1, ..., F∗vn)ωx . (A.26)

If we let vi be an orthonormal basis of vectors orthogonal to F−1(c) at x then F∗vi5667

are linearly independent and so5668

ω =(dVh(F∗v1, ..., F∗vn))
−1i(v1,...,vn)dVg (A.27)

=(dVh(F∗v1, ..., F∗vn))
−1dAg .

Choose coordinates about x and F (x) so that ∂xi = vi for i = 1...n, {∂xi}mn+1 span5669

kerF∗, and ∂yi are orthonormal. Then5670

dVh(F∗v1, ..., F∗vn) =
√
|det(h)|∂F

j1

∂x1
...
∂F jn

∂xn
dy1 ∧ ... ∧ dyn(∂yj1 , ..., ∂yjn ) (A.28)

= det

(
∂F j

∂xi

)n

i,j=1

.
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F∗∂xi = 0 for i = n + 1...m and so ∂F j

∂xi
= 0 for i = n + 1...m. Letting η = diag(±1)5671

be the signature of g, we find5672

NJF (x) =

∣∣∣∣det(hik(F (x))∂F k

∂xl
(x)glm(x)

∂F j

∂xm
(x)

)∣∣∣∣1/2 (A.29)

=

∣∣∣∣∣∣det
 n∑

l,m=1

∂F k

∂xl
(x)ηlm(x)

∂F j

∂xm
(x)

∣∣∣∣∣∣
1/2

=

∣∣∣∣∣det
(
∂F k

∂xl

)n

k,l=1

det(ηlm)nl,m=1 det

(
∂F j

∂xm

)n

j,m=1

∣∣∣∣∣
1/2

=

∣∣∣∣∣det
(
∂F k

∂xl

)n

k,l=1

∣∣∣∣∣
=|dVh(F∗v1, ..., F∗vn)| .

Therefore5673

ω = NJF−1dAg (A.30)

as densities.5674

In particular, this shows that even though NJF and dAg are undefined individually5675

when g is degenerate on F−1(c), one can make sense of their ratio in this situation5676

as the induced volume form ω.5677

Delta Function Supported on a Level Set5678

The induced measure defined above allows for a coordinate independent definition of5679

a delta function supported on a regular level set. Such an object is of great use in5680

performing calculations in relativistic phase space. We give the definition and prove5681

several properties that justify several common formal manipulations that one would5682

like to make with such an object.5683

Definition 2 Motivated by the coarea formula, we define the composition of the Dirac5684

delta function supported on c ∈ N with a smooth map F :M → N such that c is a5685

regular value of F by5686

δc(F (x))Ω
M ≡ ωM (A.31)

on F−1(c). This is just convenient shorthand, but it commonly used in the physics lit-5687

erature (typically without the justification presented above or in the following results).5688

For f ∈ L1(ωM ) we will write5689 ∫
M

f(x)δc(F (x))Ω
M (dx) (A.32)

in place of5690 ∫
F−1(c)

f(x)ωM (dx) . (A.33)

More generally, if the subset of F−1(c) consisting of critical points, a closed set5691

whose complement we call U , has dimM − dimN dimensional Hausdorff measure5692

zero in M then we define5693 ∫
M

f(x)δc(F (x))Ω
M (dx) =

∫
F |−1

U (c)

f(x)ωM . (A.34)
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This holds, for example, if U c is contained in a submanifold of dimension less than5694

dimM − dimN .5695

Equivalently, we can replace U in this definition with any open subset of U whose5696

complement still has dimM − dimN dimensional Hausdorff measure zero. In this5697

situation, we will say c is a regular value except for a lower dimensional exceptional5698

set. Note that while Hausdorff measure depends on a choice of Riemannian metric on5699

M , the measure zero subsets are the same for each choice.5700

Using Eq. (A.15), along with the coordinates described there, we can (at least5701

locally) write the integral with respect to the delta function in the more readily5702

usable form5703 ∫
M

f(x)δc(F (x))Ω
M =

∫
F−1(c)

f(x)
hM (x)

hN (F (x))

∣∣∣∣det(∂F i

∂xj

)−1 ∣∣∣∣dxn+1...dxm . (A.35)

The absolute value comes from the fact that we use δc(F (x))Ω
M to define the orien-5704

tation on F−1(c).5705

As expected, such an operation behaves well under diffeomorphisms.5706

Lemma 2 Let c be a regular value of F : M → N and Φ : M
′ → M be a dif-5707

feomorphism. Then the delta functions induced by F : (M,ΩM ) → (N,ΩN ) and5708

F ◦ Φ : (M
′
, Φ∗ΩM )→ (N,ΩN ) satisfy5709

δc(F ◦ Φ)(Φ∗ΩM ) = Φ∗(δc(F )Ω
M ) . (A.36)

Lemma 3 Let c be a regular value of F : (M,ΩM ) → (N,ΩN ) and Φ : N →5710

(N
′
, ΩN

′

) be a diffeomorphism where Φ∗ΩN
′

= ΩN . Then the delta functions in-5711

duced by F : (M,ΩM )→ (N,ΩN ) and Φ ◦ F : (M,ΩM )→ (N
′
, ΩN

′

) satisfy5712

δc(F )Ω
M = δΦ(c)(Φ ◦ F )ΩM . (A.37)

We also have a version of Fubini’s theorem.5713

Theorem 5 (Fubini’s Theorem for Delta functions) Let M1,M2, N be smooth5714

manifolds with volume forms Ω1, Ω2, Ω
N . Let M ≡ M1 × M2 and Ω ≡ Ω1 ∧ Ω2.5715

Suppose that the set of (x, y) ∈ F−1(c) such that F |M1×{y} is not regular at x has5716

dimM1+dimM2−dimN dimensional Hausdorff measure zero inM1×M2 (we denote5717

the complement of this closed set by U). Then for f ∈ L1(ω)
⋃
L+(F−1(c)) we have5718 ∫

M

f(x, y)δc(F (x, y))Ω(dx, dy) =

∫
M2

[∫
Uy

f(x, y)δc(F (x, y))Ω1(dx)

]
Ω2(dy) ,

(A.38)
where Uy = {x ∈M1 : (x, y) ∈ U}.5719

Proof Our assumption about F |M1×{y} implies that c is a regular value of F :M1 ×5720

M2 → N except for the lower dimensional exceptional set U c and for y ∈M2, c is also5721

a regular value of F |Uy×{y}, hence both sides of Eq. (A.38) are well defined. Rewriting5722

Eq. (A.38) without the delta function, we then need to show that5723 ∫
F |−1

U (c)

f(x, y)dω =

∫
M2

[∫
F |−1

Uy×{y}(c)

f(x, y)ω1
c,y(dx)

]
Ω2(dy) , (A.39)

where ω1
c,y is the induced volume form on F |−1Uy×{y}(c).5724
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Consider the projection map restricted to the c-level set, π2 : F |−1U (c) → M2. By5725

assumption, F |M1×{y} is regular at x for all (x, y) ∈ F |−1U (c). For such an (x, y), take a5726

basis wi ∈ TyM2. Since F |M1×{y} has full rank at x, for each i there exists vi ∈ TxM15727

such that F (·, y)∗vi = F∗(0, wi). Therefore (−vi, wi) ∈ kerF∗|(x,y) = T(x,y)F |−1U (c).5728

Hence wi ∈ π2∗T(x,y)F−1(c) and so π2 : F |−1U (c)→M2 is regular at (x, y).5729

Since π2 is regular for all (x, y) ∈ F |−1U (c) the coarea formula applies, giving5730 ∫
F |−1

U (c)

fdω =

∫
M2

[∫
π−1
2 (y)

fω̃1
c,y

]
Ω2(dy) (A.40)

for all f ∈ L1(ω)
⋃
L+(F−1(c)), where ω̃1

c,y is the volume form on π−12 (y) induced by5731

π2 : (F |−1U (c), ω)→ (M2, Ω2).5732

As a point set, π−12 (y) = F |−1Uy×{y}(c) and both are embedded submanifolds of5733

M1×M2 for a.e. y ∈M2, hence are equal as manifolds. So if we can show ω̃1
c,y = ω1

c,y5734

as densities whenever F |M1×{y} is regular at x for some (x, y) then we are done.5735

Given any such (x, y), take vi ∈ TxM1 such that ΩN (F (·, y)∗vi) = 1. By definition,5736

ω1
c,y = i(v1,...,vn)Ω1. We also have (vi, 0) ∈ T(x,y)M1 ×M2 and ΩN (F∗(vi, 0)) = 1.5737

Hence5738

ω =i((v1,0),...,(vn,0))(Ω1 ∧Ω2) = (i((v1,0),...,(vn,0))Ω1) ∧Ω2 . (A.41)

Let wi ∈ TyM2 such that Ω2(w1, ..., wm2) = 1. By the same argument as above, there5739

exists ṽi ∈ TxM1 such that (ṽi, wi) ∈ kerF∗ = T(x,y)F
−1(c). π2∗(ṽi, wi) = wi and5740

Ω2(w1, ..., wm2
) = 1 so by definition,5741

ω̃1
c,y = i((ṽ1,w1),...,(ṽm2

,wm2
))ω . (A.42)

Since any term containing Ω2 will vanishes on TF (·, y)−1(c) ⊂ TM1, we have5742

ω̃1
c,y =(−1)m1−ni((v1,0),...,(vn,0))Ω1 (A.43)

=(−1)m1−nω1
c,y ∧

(
i((ṽ1,w1),...,(ṽm2

,wm2
))Ω2

)
=(−1)m1−nω1

c,y .

As we are integrating with respect to the densities defined by ω1
c,y and ω̃1

c,y we are5743

done.5744

Before moving on, we give a few more useful identities.5745

Theorem 6 Let (c1, c2) be a regular value of F ≡ F1 × F2 : (M,ΩM ) → (N1 ×5746

N2, Ω
N1 ∧ΩN2). Then c2 is a regular value of F2, c1 is a regular value of F1|F−1

2 (c2)
5747

and we have5748

δ(F )ΩM = δ(F1)(δ(F2)Ω
M ) . (A.44)

Proof (c1, c2) is a regular value of F , hence there exists vi, wi such that F∗vi = (ṽi, 0),5749

F∗wi = (0, w̃i) satisfy5750

ΩN1 ∧ΩN2((ṽ1, 0), ..., (0, w̃1), ...) = 1 . (A.45)

After rescaling, we can assume5751

ΩN1(ṽ1, ..., ṽn1
) = 1, ΩN2(w̃1, ..., w̃n2

) = 1 . (A.46)
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Therefore c2 is a regular value of F2 and5752

δ(F2)Ω
M = iw1,...,wn

ΩM . (A.47)

The tangent space to F−12 (c2) is ker(F2)∗ which contains vi. Hence c1 is a regular5753

value of F1|F−1
2 (c2)

and5754

δ(F1)(δ(F2)Ω
M ) =iv1,...,vnδ(F2)Ω

M = ±iv1,...,vn,w1,...,wnΩ
M , (A.48)

therefore they agree as densities.5755

Theorem 7 Let ci ∈ Ni be regular values of Fi :Mi → Ni and define F = F1 × F2 :5756

M1 ×M2 → N1 ×N2, c = (c1, c2). If Ω
Mi and ΩNi are volume forms on Mi and Ni5757

respectively then5758

δc(F )
(
ΩM1 ∧ΩM2

)
=
(
δc1(F1)Ω

M1
)
∧
(
δc2(F2)Ω

M2
)

(A.49)

as densities.5759

Proof Our assumptions ensure that both sides are m1 + m2 − n1 − n2-forms on5760

F−11 (c1)× F−12 (c2). Choose v
j
i ∈ TMi that satisfy Ω

Ni(Fi∗v
1
i , ..., Fi∗v

ni
i ) = 1 then5761

ΩN1 ∧ΩN2(F∗(v
1
1 , 0), ..., F∗(v

n1
1 , 0), F∗(0, v

1
2), ..., F∗(0, v

n2
2 )) (A.50)

=ΩN1 ∧ΩN2(F1∗v
1
1 , ..., F2∗v

n2
2 )

=ΩN1(v11 , ..., v
n1
1 )ΩN2(v12 , ..., v

n2
2 ) = 1 .

Therefore, by definition5762

δc ◦ F
(
ΩM1 ∧ΩM2

)
=i(v1

1 ,0),...,(v
n1
1 ,0),(0,v1

2),...,(0,v
n2
2 )

(
ΩM1 ∧ΩM2

)
(A.51)

=(−1)n2

(
iv1

1 ,...,v
n1
1
ΩM1

)
∧
(
iv1

2 ,...,v
n2
2
ΩM2

)
=(−1)n2 (δc1 ◦ F1) ∧ (δc2 ◦ F2) .

Therefore they agree as densities.5763

Theorem 8 Let Fi :Mi → Ni and g : N1 ×N2 → K be smooth. Let ΩMi , ΩN1 , ΩK
5764

be volume forms on Mi, N1, K respectively. Suppose c is a regular value of F1 and d5765

is a regular value of g(c, F2) and of g ◦ F1 × F2. Then5766

δc(F1)
[
δd(g ◦ F1 × F2)

(
ΩM1 ∧ΩM2

)]
=
(
δc(F1)Ω

M1
)
∧
(
δd(g(c, F2))Ω

M2
)
. (A.52)

Proof Let (x, y) ∈ (f ◦F1×F2)
−1(d) with x ∈ F−1(c). For any w ∈ TcN1 there exists5767

v ∈ TxM1 such that F1∗v = w. d is a regular value of g(c, F2) hence there exists ṽ5768

such that g(c, F2)∗ṽ = (g ◦ F1 × F2)∗(v, 0). Therefore (g ◦ F1 × F2)∗(v,−ṽ) = 0 and5769

F1 ∗ (v,−ṽ) = w. This proves c is a regular value of F1 on (g ◦ F1 × F2)
−1(d). This5770

proves both sides are defined and are forms on F−1(c)× g(c, F2)
−1(d).5771

Let x ∈ F−1(c) and y ∈ g(c, F2)
−1(d) and choose vi, wj such that5772

ΩN1(F1∗v1, ..., F1∗vn1
) = 1 , ΩK(g(c, F2)∗w1, ..., g(c, F2)∗wk) = 1 . (A.53)

Then5773

ΩK((g ◦ F1 × F2)∗(0, w1), ..., (g ◦ F1 × F2)∗(0, wk)) = 1 (A.54)
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and so5774

δd(g ◦ F1 × F2)
(
ΩM1 ∧ΩM2

)
= i(0,w1),...,(0,wk)

(
ΩM1 ∧ΩM2

)
(A.55)

= ΩM1 ∧
(
iw1,...,wk

ΩM2
)

= ΩM1 ∧
(
δd(g(c, F2))Ω

M2
)
.

By the same argument as above, we get ṽi such that (vi, ṽi) ∈ T(x,y)(g◦F1×F2)
−1(d).5775

Hence5776

δc(F1)
[
δd(g ◦ F1 × F2)

(
ΩM1 ∧ΩM2

)]
= i(v1,ṽ1),...,(vn1

,ṽn1
)

[
ΩM1 ∧

(
iw1,...,wk

ΩM2
)]
.

(A.56)
The only non-vanishing term is5777 (
i(v1,ṽ1),...,(vn1

,ṽn1
)Ω

M1

)
∧
(
iw1,...,wk

ΩM2
)
=
(
iv1,...,vn1

ΩM1
)
∧
(
iw1,...,wk

ΩM2
)
(A.57)

since the other terms all contain a m1 − n1 + l form on the m1 − n1-dimensional5778

manifold F−1(c) for some l > 0. This proves the result.5779

Sometimes it is convenient to use the delta function to introduce “dummy inte-5780

gration variables”, by which we mean utilizing the following simple corollary of the5781

coarea formula.5782

Corollary 3 Let ΩM be a volume form on M , F : M → (N,ΩN ) be smooth, and5783

f : N ×M → R such that f(F (·), ·) ∈ L1(ΩM )
⋃
L+(M). If F∗ is surjective at a.e.5784

x ∈M then5785 ∫
M

f(F (x), x)ΩM (dx) =

∫
N

∫
F−1(z)

f(z, x)δz(F )Ω
M (dx)ΩN (dz) . (A.58)

A.2 Applications5786

Relativistic Volume Element5787

We now discuss an application of the above results to the single particle phase space5788

volume element. We first define it in the massive case, where the semi-Riemannian5789

method of defining volume forms is applicable. The massless case is often handled via5790

a limiting argument [307]. We will show that our method is able to handle both the5791

massive and massless case in a unified manner.5792

Given a time oriented n+1 dimensional semi-Riemannian manifold (M, g), there5793

is a natural induced metric g̃ on the tangent bundle, called the diagonal lift. At a5794

given point (x, p) ∈ TM its coordinate independent definition is5795

g̃(x,p)(v, w) = gx(π∗v, π∗w) + gx(Dtγv, Dtγw) , (A.59)

where γv is any curve in TM with tangent v at x, π : TM −→ M is the projection,5796

and Dtγv is the covariant derivative of γv, treated as a vector field along the curve5797

π◦γv, and similarly for γw, see, e.g., [308]. The result can be shown to be independent5798

of the choice of curves. In a coordinate system on M where the the first coordinate is5799

future timelike and the Christoffel symbols are Γ β
ση, consider the induced coordinates5800

(xα, pα), α = 0, ..., n on TM . In these coordinates we have5801

g̃(xα,pα) = gβ,δ(x
α)dxβ ⊗ dxδ + gβ,δ(x

α)ϵβ ⊗ ϵδ, ϵβ = dpβ + pσΓ β
ση(x

α)dxη . (A.60)
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The vertical and horizontal subspaces are spanned by5802

Vα = ∂pα , Hα = ∂xα − pσΓ β
σα∂pβ (A.61)

respectively. The horizontal vector fields satisfy5803

g̃(Hα, Hβ) = gαβ . (A.62)

For any manifold (oriented or not), the tangent bundle has a canonical orientation.5804

With this orientation, the volume form on TM induced by g̃ is5805

d̃V (xα,pα) = |g(xα)|dx0 ∧ ... ∧ dxn ∧ dp0 ∧ ... ∧ dpn , (A.63)

where |g(xα)| denotes the absolute value of the determinant of the component matrix5806

of g in these coordinates.5807

Of primary interest in kinetic theory for a particle of mass m ≥ 0 is the mass shell5808

bundle5809

Pm = {p ∈ TM : g(p, p) = m2, p future directed} (A.64)

and it will be necessary to have a volume form on Pm. Pm is a connected component5810

of the zero set of the of the smooth map5811

h : TM \ {0x : x ∈M} −→ R, h(x, p) =
1

2
(gx(p, p)−m2) . (A.65)

We remove the image of the zero section to avoid problems whenm = 0. Its differential5812

is5813

dh =
1

2

∂gσδ
∂xα

pσpδdxα + gσδp
σdpδ = gσδp

σϵδ . (A.66)

g is nondegenerate, so for p = pα∂xα ∈ TMx \ {0x} there is some v = vα∂xα ∈ TMx5814

with g(v, p) ̸= 0. Therefore5815

dh(x,p)(v
α∂pα) = g(v, p) ̸= 0 . (A.67)

This proves Pm is a regular level set of h, and hence is a closed embedded hypersurface5816

of TM \ {0x : x ∈ M}. For m ̸= 0 it is also closed in TM , but for m = 0 every zero5817

vector is a limit point of Pm.5818

Massive Case:5819

For m ̸= 0, we will show that Pm is a semi-Riemannian hypersurface in TM and5820

hence inherits a volume form from TM . This is the standard method of inducing a5821

volume form, as presented in [307].5822

The normal to Pm is5823

gradh = g̃−1(dh) = pα∂pα (A.68)

which has norm squared5824

g̃(gradh, gradh) = g(p, p) = m2 . (A.69)

Therefore, for m ̸= 0, Pm has a unit normal N = gradh/m and so it is a semi-5825

Riemannian hypersurface with volume form5826

d̃V m = iN d̃V =
|g|
m
dx0∧ ...∧dxn∧

(∑
α

(−1)αpαdp0 ∧ ... ∧ d̂pα ∧ ... ∧ dpn
)
, (A.70)

where iN denotes the interior product (or contraction) and a hat denotes an omitted5827

term. We are also interested in the volume form on Pm,x the fiber of Pm over a point5828
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x ∈M . We obtain this by contracting d̃V with an orthonormal basis of vector fields5829

normal to Pm,x. Such a basis is composed of N together with an orthonormalization5830

of the basis of horizontal fields, Wα = Λβ
αHβ , where Hβ are defined in Eq. (A.61).5831

Therefore we have5832

d̃V m,x = iW0
...iWn

d̃V m . (A.71)

We can simplify these expressions by defining a coordinate system on the momentum5833

bundle, writing p0 as a function of the pi. The details, which are standard, are carried5834

out in Appendix A.2. The results are5835

d̃V m =
m|g|
p0

dx0 ∧ ... ∧ dxn ∧ dp1 ∧ ... ∧ dpn , (A.72)

5836

d̃V m,x =
m|g|1/2

p0
dp1 ∧ ... ∧ dpn . (A.73)

We define π and πx by5837

π =
1

m
d̃V m =

|g|
p0
dx0 ∧ ... ∧ dxn ∧ dp1 ∧ ... ∧ dpn , (A.74)

5838

πx =
1

m
d̃V m,x =

|g|1/2

p0
dp1 ∧ ... ∧ dpn . (A.75)

We will typically omit the subscript x and let the context distinguish whether we are5839

integrating over the full momentum bundle (i.e. both over spacetime and momentum5840

variables) or just momentum space at a single point in spacetime.5841

5842

Massless Case:5843

When m = 0 the above construction fails. However, we can use Theorem 1 to induce5844

a volume form using the map Eq. (A.65) defined above. Here we carry out the con-5845

struction for the induced volume form on Pm,x for any m ≥ 0. The volume form on5846

each tangent space TxM is5847

d̃V x = |g(x)|1/2dp0 ∧ ... ∧ dpn . (A.76)

We assume that the coordinates are chosen so that the vector field ∂p0 is timelike. By5848

Eq. (A.66) we find5849

dh(∂p0) = gα0p
α ̸= 0 (A.77)

on Pm,x. Therefore, by Corollary 1 the induced volume form is5850

ω =
1

dh(∂p0)
i∂p0

d̃V x =
|g|1/2

p0
dp1 ∧ ... ∧ dpn . (A.78)

We can also pull this back under the coordinate chart on Pm,x defined in Appendix5851

A.2 and obtain the same expression in coordinates. This result agrees with our prior5852

definition of Eq. (A.75) in the case wherem > 0 but is also able to handle the massless5853

case in a uniform manner, without resorting to a limiting argument as m→ 0.5854

We also point out another convention in common use where h is replaced by 2h.5855

This leads to an additional factor of 1/2 in the volume element, distinguishing this5856

definition from the one based on semi-Riemannian geometry. However, the convention5857

ω =
|g|1/2

2p0
dp1 ∧ ... ∧ dpn (A.79)

is in common use and will be employed in the scattering integral computations in5858

Appendix C.5859
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Relativistic Phase Space5860

Here we justify several manipulations that are useful for working with relativistic5861

phase space integrals.5862

Lemma 4 Let V be an n-dimensional vector space. The subset of
∏N

1 V \ {0} con-5863

sisting of N -tuples of parallel vectors is an n+N − 1 dimensional closed submanifold5864

of
∏N

1 V \ {0}.5865

Proof The map V × RN−1 →
∏N

1 V \ {0} given by5866

F (p, a2, ..., aN ) = (p, a2p, ..., aNp) (A.80)

is an injective immersion and maps onto the desired set.5867

For reactions converting k particles to l particles, the relevant phase space is 3(k+l)−45868

dimensional and so for k + l ≥ 4 (in particular for 2-2 reactions), the set of parallel5869

4-momenta is lower dimensional and can be ignored. This will be useful as we proceed.5870

Lemma 5 Let N ≥ 4. Then5871

∏
i

δ(p2i −m2
i )d

4pi =

(∏
i

δ(p2i −m2
i )

)∏
i

d4pi (A.81)

and5872

δ(∆p)

[(∏
i

δ(p2i −m2
i )

)∏
i

d4pi

]
=

(
δ(∆p)

∏
i

δ(p2i −m2
i )

)∏
i

d4pi , (A.82)

where each d4pi is the standard volume form on future directed vectors, {p : p2 ≥5873

0, p0 > 0}, we give R its standard volume form, and ∆p = aipi, a
i = 1, i = 1, ..., l,5874

ai = −1, i = l, ..., N .5875

Proof Let F1(pi) = (p21, ..., p
2
N ) and F2(pi) = (∆p,F1(pi)). We need to show that5876

(m2
1, ...,m

2
N ) is a regular value of F1 and (0,m2

1, ...,m
2
k) is a regular value of F2. The5877

result then follows from Theorem 6.5878

It holds for F1 since each pi ̸= 0. For F2, the differential is5879

(F2)∗ =


a1I a2I ... aNI

2ηijp
j
1 0 ... 0

...
...

0 ... 0 2ηijp
j
N

 (A.83)

where I is the 4-by-4 identity. The fact that (F1)∗ is onto means that we need only5880

show (F2)∗ maps onto R4 × (0, ..., 0).5881

By Lemma 4 we assume there exists i, j such that pi, pj are not parallel. We are5882

done if for each standard basis vector ek ∈ R4 there exists q ∈ R4 such that5883

pi · q =
1

aj
pi · ek, pj · q = 0 . (A.84)

If pj is null then there is a c such that q = cpj satisfies these conditions. If pj is non-5884

null then complete it to an orthonormal basis. pi must have a component along the5885

orthogonal complement of pj and we can take q to be proportional to that component.5886
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Volume Form in Coordinates5887

Here we derive a useful formula for the volume form on the momentum bundle in a5888

simple coordinate system. We begin in a coordinate system xα on U ⊂ M and the5889

induced coordinates pα on TM where our only assumption is that the 0’th coordinate5890

direction is future timelike, and so g00 > 0. For any vi ∈ Rn, let v0 = −g0ivi/g00. vα5891

is orthogonal to the 0’th coordinate direction, and therefore spacelike. Hence5892

0 ≥ gαβvαvβ = −(g0ivi)2/g00 + gijv
ivj . (A.85)

and is zero iff vα = 0. Therefore, the following map is well defined5893

(xα, pj) −→ (xα, p0(xα, pj), p1, ..., pn), α = 0...n, j = 1...n ,

p0 = −g0jpj/g00 +
(
(g0jp

j/g00)
2 + (m2 − gijpipj)/g00

)1/2
, (A.86)

and is smooth on Rn+1×Rn if m ̸= 0, and on Rn+1× (Rn \ 0) if m = 0. We also have5894

g00p
0 + g0jp

j > 0 under either of these cases, and so the resulting element of TM is5895

future directed and has squared norm m2, so it maps into Pm. It is a bijection and5896

has full rank, hence it is a coordinate system on Pm. In these coordinates, the volume5897

form is5898

d̃V m =
|g|
m
dx0 ∧ ... ∧ dxn ∧

p0dp1 ∧ ... ∧ dpn +
∑
j

(−1)jpjdp0 ∧ ... ∧ d̂pj ∧ ... ∧ dpn


dp0 =∂xαp0dxα + ∂pj (p0)dpj . (A.87)

The terms in dp0 involving dxα drop out once they are wedged with dx0 ∧ ... ∧ dxn,5899

hence5900

d̃V m (A.88)

=
|g|
m
dx0 ∧ ... ∧ dxn ∧

p0dp1 ∧ ... ∧ dpn +
∑
i,j

(−1)jpj∂pip0dpi ∧ ... ∧ d̂pj ∧ ... ∧ dpn


=
|g|
m

p0 −∑
j

pj∂pj (p0)

 dx0 ∧ ... ∧ dxn ∧ dp1 ∧ ... ∧ dpn ,

p0 −
∑
j

pj∂pj (p0) = p0 + g0jp
j/g00 −

(g0jp
j/g00)

2 − gijpipj/g00
((g0jpj/g00)2 + (m2 − gijpipj)/g00)1/2

=
1

p0

(
1

g00
(g00p

0 + g0,jp
j)2 − (g0jp

j)2/g00 + gijp
ipj
)

=
m2

p0
.

Therefore5901

d̃V m =
m|g|
p0

dx0 ∧ ... ∧ dxn ∧ dp1 ∧ ... ∧ dpn . (A.89)

To compute the volume form on Pm,x, recall that5902

d̃V m,x = iW0
...iWn

d̃V m . (A.90)

Where Wi is an orthonormalization of the basis of horizontal fields, Wα = Λβ
αHβ ,5903

where Hβ are defined in Eq. (A.61). All of the contractions in Eq. (A.90) that involve5904



216 Will be inserted by the editor

the dpα’s will be zero when restricted to Pm,x since the dxα are zero there. Hence we5905

obtain5906

d̃V m,x =
|g|
m

p0 −∑
j

pj∂pj (p0)

 dx0 ∧ ... ∧ dxn (W0, ...,Wn)) dp
1 ∧ ... ∧ dpn

(A.91)

=
|g|det(Λ)

m

p0 −∑
j

pj∂pj (p0)

 dx0 ∧ ... ∧ dxn (H0, ...,Hn)) dp
1 ∧ ... ∧ dpn

=
|g|1/2

m

p0 −∑
j

pj∂pj (p0)

 dp1 ∧ ... ∧ dpn ,

where we used det(Λσ
αgσδΛ

δ
β) = 1. In the coordinate system on Pm,x,5907

(pj) −→ (p0(xα, pj), p1, ..., pn) , (A.92)

p0 = −g0j(x)pj/g00(x) +
(
(g0j(x)p

j/g00(x))
2 + (m2 − gij(x)pipj)/g00(x)

)1/2
,

the above calculation gives the formula5908

d̃V m,x =
m|g|1/2

p0
dp1 ∧ ... ∧ dpn . (A.93)
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B Boltzmann-Einstein Equation Solver Adapted to Emergent5909

Chemical Nonequilibrium5910

Having completed the geometrical background in Appendix A, we now proceed to de-5911

velop a numerical method for the Boltzmann-Einstein equation in an FLRW universe.5912

This will allow us to efficiently study nonequilibrium aspects of neutrino freeze-out.5913

The analysis in Section 3.3 was based on exact chemical and kinetic equilibrium and5914

sharp freeze-out transitions at Tch and Tk, but these are only approximations. The5915

Boltzmann-Einstein equation is a more precise model of the dynamics of the freeze-5916

out process and furthermore, given the collision dynamics it is capable of capturing5917

in a quantitative manner the non-thermal distortions from equilibrium, for example5918

the emergence of actual distributions and the approximate values of Tch, Tk, and5919

Υ . Indeed, in such a dynamical description no hypothesis about the presence of ki-5920

netic or chemical (non) equilibrium needs to be made, as the distribution close to5921

Eq. (3.76) with Υ ̸= 1 emerges naturally as the outcome of collision processes, even5922

when the particle system approaches the freeze-out temperature domain in chemical5923

equilibrium.5924

Considering the natural way in which chemical nonequilibrium emerges from5925

chemical equilibrium during freeze-out, it is striking that the literature on Boltzmann5926

solvers does not reflect on the accommodation of emergent chemical nonequilibrium5927

into the method of solution. For an all-numerical solver this may not be a neces-5928

sary step as long as there are no constraints that preclude development of a general5929

nonequilibrium solution. However, when strong chemical nonequilibrium is present ei-5930

ther in the intermediate time period or/and at the end of the evolution, a brute force5931

approach can be very costly in computer time. Motivated by this circumstance and5932

past work with physical environments in which chemical nonequilibrium arises, we5933

introduce here a spectral method for solving the Boltzmann-Einstein equation that5934

utilizes a dynamical basis of orthogonal polynomials which is adapted to the case of5935

emerging chemical nonequilibrium. We validate our method via a model problem that5936

captures the essential physical characteristics of interest and use it to highlight the5937

type of situation where this new method exhibits its advantages.5938

In the cosmological context, the Boltzmann-Einstein equation has been used to5939

study neutrino freeze-out in the early universe and has been successfully solved using5940

both discretization in momentum space [309,310,311,312,50] and a spectral method5941

based on a fixed basis of orthogonal polynomials [313,129]. In Refs.[314,315] the5942

nonrelativistic Boltzmann equation was solved via a spectral method similar in one5943

important mathematical idea to the approach we present here. For near equilibrium5944

solutions, the spectral methods have the advantage of requiring a relatively small5945

number of modes to obtain an accurate solution, as opposed to momentum space5946

discretization which in general leads to a large highly coupled nonlinear system of5947

odes irrespective of the near equilibrium nature of the system.5948

The efficacy of the spectral method used in [313,129] can largely be attributed to5949

the fact that, under the conditions considered there, the true solution is very close to5950

a chemical equilibrium distribution, Eq. (3.75), where the temperature is controlled5951

by the dilution of the system. However, as we have discussed, the Planck CMB results5952

[62] indicate the possibility that neutrinos participated in reheating to a greater degree5953

than previously believed, leading to a more pronounced chemical nonequilibrium and5954

reheating. Efficiently obtaining this emergent chemical nonequilibrium within the5955

realm of kinetic theory motivates the development of a new numerical method that5956

is adapted to this circumstance.5957

First, in Section B.1 we give important general background on moving frames of5958

orthogonal polynomials, deriving several formulas and properties that will be needed5959

in our method for solving the Boltzmann-Einstein equation. In Section B.2 we develop5960
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the details of our method. We start with a basic overview of the Boltzmann-Einstein5961

equation in an FLRW Universe, then we recall the orthogonal polynomial basis used5962

in [313,129] and compare this with our modified basis moving frame method. We use5963

the Boltzmann-Einstein equation to derive the dynamics of the mode coefficients and5964

identify physically motivated evolution equations for the effective temperature and5965

fugacity. In Section B.3 we validate the method using a model problem. This section5966

is adapted from [2,21,19].5967

B.1 Orthogonal Polynomials5968

In this section we give details regarding the construction of the moving frame of5969

orthogonal polynomials that will be required for our Boltzmann-Einstein equation5970

solver.5971

Generalities5972

Let w : (a, b) → [0,∞) be a weight function where (a, b) is a (possibly unbounded)5973

interval and consider the Hilbert space L2(w(x)dx). We will consider weights such5974

that xn ∈ L2(w(x)dx) for all n ∈ N. We denote the inner product by ⟨·, ·⟩, the norm5975

by ||·||, and for a vector ψ ∈ L2 we let ψ̂ ≡ ψ/||ψ||. The classical three term recurrence5976

formula can be used to define a set of orthonormal polynomials ψ̂i using this weight5977

function, see, e.g., [316],5978

ψ0 = 1 , ψ1 = ||ψ0||(x− ⟨xψ̂0, ψ̂0⟩)ψ̂0 , (B.1)

ψn+1 = ||ψn||
[(
x− ⟨xψ̂n, ψ̂n⟩

)
ψ̂n − ⟨xψ̂n, ψ̂n−1⟩ψ̂n−1

]
.

One can also derive recursion relations for the derivatives of ψn with respect to x,5979

denoted with a prime,5980

ψ
′

0 = 0, ψ̂
′

1 =
||ψ0||
||ψ1||

ψ̂0 , (B.2)

ψ̂
′

n+1 =
||ψn||
||ψn+1||

[
ψ̂n +

(
x− ⟨xψ̂n, ψ̂n⟩

)
ψ̂

′

n − ⟨xψ̂n, ψ̂n−1⟩ψ̂
′

n−1

]
.

Since ψ̂
′

n is a degree n− 1 polynomial, we have the expansion5981

ψ̂
′

n =
∑
k<n

aknψ̂k . (B.3)

Using Eq. (B.2) we obtain a recursion relation for the akn5982

akn+1 =
||ψn||
||ψn+1||

(
δn,k − ⟨xψ̂n, ψ̂n⟩akn − ⟨xψ̂n, ψ̂n−1⟩akn−1 +

l∑
l<n

aln⟨xψ̂l, ψ̂k⟩

)
,

a01 =
||ψ0||
||ψ1||

.

Parametrized Families of Orthogonal Polynomials5983

Our method requires not just a single set of orthogonal polynomials, but rather5984

a parametrized family of orthogonal polynomials that are generated by a weight5985
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function wt(x) that is a C1 function of both x ∈ (a, b) and the parameter t. The5986

corresponding time-dependent basis of orthogonal polynomials, also called a moving5987

frame, is used to define the spectral method for solving the Boltzmann-Einstein equa-5988

tion as outlined in Section B.2. To emphasize the time dependence, in this section we5989

write gt(·, ·) for the inner product ⟨·, ·⟩ (not to be confused with the spacetime metric5990

tensor). We will assume that ∂tw is dominated by some L1(dx) function of x only5991

that decays exponentially as x → ±∞ (if the interval is unbounded). In particular,5992

this holds for the weight function Eq. (B.27).5993

Given the above assumption about the decay of ∂tw, the dominated convergence5994

theorem implies that ⟨p, q⟩ is a C1 function of t for all polynomials p and q and5995

justifies differentiation under the integral sign. By induction, it also implies implies5996

that the ψ̂i have coefficients that are C1 functions of t. Therefore, for any polynomials5997

p, q whose coefficients are C1 functions of t we have5998

d

dt
gt(p, q) = ġt(p, q) + gt(ṗ, q) + gt(p, q̇) , (B.4)

where a dot denotes differentiation with respect to t and we use ġt(·, ·) to denote the5999

inner product with respect to the weight ẇ.6000

Eq. (B.38) for the mode coefficients requires us to compute g(
˙̂
ψi, ψ̂j). Differenti-6001

ating the relation6002

δij = gt(ψ̂i, ψ̂j) (B.5)

yields6003

0 = ġt(ψ̂i, ψ̂j) + gt(
˙̂
ψi, ψ̂j) + gt(ψ̂i,

˙̂
ψj) . (B.6)

For i = j we obtain6004

gt(
˙̂
ψi, ψ̂i) = −

1

2
ġt(ψ̂i, ψ̂i) . (B.7)

For i < j,
˙̂
ψi is a degree i polynomial and so it is orthogonal to ψ̂j . Therefore Eq. (B.6)6005

simplifies to6006

gt(
˙̂
ψi, ψ̂j) = −ġt(ψ̂i, ψ̂j), i ̸= j . (B.8)

Proof of Lower Triangularity6007

Here we prove that the matrices that define the dynamics of the mode coefficients bk6008

are lower triangular. This fact reduces the number of integrals that must be computed6009

in practice. Recall the definitions6010

Ak
i (Υ ) ≡⟨

z

fΥ
ψ̂i∂zfΥ , ψ̂k⟩+ ⟨z∂zψ̂i, ψ̂k⟩ , (B.9)

Bk
i (Υ ) ≡Υ

(
⟨ 1
fΥ

∂fΥ
∂Υ

ψ̂i, ψ̂k⟩+ ⟨
∂ψ̂i

∂Υ
, ψ̂k⟩

)
.

Using integration by parts, we see that6011

Ak
i = −3⟨ψ̂i, ψ̂k⟩ − ⟨ψ̂i, z∂zψ̂k⟩ . (B.10)

Since ψ̂i is orthogonal to all polynomials of degree less than i we have Ak
i = 0 for6012

k < i.6013

Bk
i can be simplified as follows. First differentiate6014

δik = ⟨ψ̂i, ψ̂j⟩ (B.11)
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with respect to Υ to obtain6015

0 =

∫
ψ̂iψ̂k∂Υwdz + ⟨∂Υ ψ̂i, ψ̂k⟩+ ⟨ψ̂i, ∂Υ ψ̂k⟩ (B.12)

=⟨ ψ̂i

fΥ
∂Υ fΥ , ψ̂k⟩+ ⟨∂Υ ψ̂i, ψ̂k⟩+ ⟨ψ̂i, ∂Υ ψ̂k⟩ .

Therefore6016

Bk
i = −Υ ⟨ψ̂i, ∂Υ ψ̂k⟩ . (B.13)

∂Υ ψ̂k is a degree k polynomial, hence Bk
i = 0 for k < i as desired.6017

B.2 Spectral Method for Boltzmann-Einstein Equation in an FLRW Universe6018

Boltzmann-Einstein Equation in an FLRW Universe6019

6020

Recall the Boltzmann-Einstein equation in a general spacetime, as introduced in6021

Section 3.2,6022

pα∂xαf − Γ j
µνp

µpν∂pjf = C[f ] . (B.14)

As discussed above, the left hand side expresses the fact that particles undergo6023

geodesic motion in between point collisions. The term C[f ] on the right hand side of6024

the Boltzmann-Einstein equation is called the collision operator and models the short6025

range scattering processes that cause deviations from geodesic motion. For 2 ↔ 26026

reactions between fermions, such as neutrinos and e±, the collision operator takes the6027

form6028

C[f1] =
1

2

∫
F (p1, p2, p3, p4)S|M|2(2π)4δ(∆p)

4∏
i=2

δ0(p
2
i −m2

i )
d4pi
(2π)3

, (B.15)

F =f3(p3)f4(p4)f
1(p1)f

2(p2)− f1(p1)f2(p2)f3(p3)f4(p4) ,
f i =1− fi .

Here |M|2 is the process amplitude or matrix element, S is a numerical factor that in-6029

corporates symmetries and prevents over-counting, f i are the Fermi blocking factors,6030

δ(∆p) enforces four-momentum conservation in the reactions, and the δ0(p
2
i − m2

i )6031

restrict the four momenta to the future timelike mass shells.6032

The matrix element for a 2 ↔ 2 reaction is some function of the Mandelstam6033

variables s, t, u, of which only two are independent, defined by6034

s = (p1 + p2)
2 = (p3 + p4)

2 , (B.16)

t = (p3 − p1)2 = (p2 − p4)2 ,
u = (p3 − p2)2 = (p1 − p4)2 ,

s+ t+ u =
∑
i

m2
i .

We will provide a detailed study of 2-2 scattering kernels for neutrino processes in6035

Appendix C. In this section, when testing the numerical method presented below, we6036

will use a simplified scattering model to avoid any application specific details.6037

We now restrict our attention to systems of fermions under the assumption of6038

homogeneity and isotropy. We assume that the particle are effectively massless, i.e.6039

the temperature is much greater than the mass scale. Homogeneity and isotropy6040
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imply that the distribution function of each particle species under consideration has6041

the form f = f(t, p) where p is the magnitude of the spacial component of the four6042

momentum. In a flat FLRW universe the Boltzmann-Einstein equation reduces to6043

∂tf − pH∂pf =
1

E
C[f ] , H =

ȧ

a
. (B.17)

The Boltzmann-Einstein equation Eq. (B.17) can be simplified by the method6044

of characteristics. Writing f(p, t) = g(a(t)p, t) and reverting back to call the new6045

distribution g → f , the 2nd term in Eq. (B.17) cancels out and the evolution in6046

time can be studied directly. Using the formulas for the moments of f Eq. (1.47),6047

this transformation implies for the rate of change in the number density and energy6048

density6049

1

a3
d

dt
(a3n1) =

gp
(2π)3

∫
C[f1]

d3p

E
, (B.18)

1

a4
d

dt
(a4ρ1) =

gp
(2π)3

∫
C[f1]d

3p . (B.19)

For free-streaming particles the vanishing of the collision operator implies conserva-6050

tion of comoving particle number of the particle species. From the associated powers6051

of a in Eq. (B.18) and Eq. (B.19) we see that the energy per free streaming particle6052

as measured by an observer scales as 1/a, a manifestation or redshift.6053

Orthogonal polynomials for systems close to kinetic and chemical equilibrium6054

Here we outline the approach for solving Eq. (B.20) used in [313,129] in order to6055

contrast it with our approach as presented below. As just discussed, the Boltzmann-6056

Einstein equation equation is a first order partial differential equation and can be6057

reduced using a new variable y = a(t)p via the method of characteristics and exactly6058

solved in the collision free (C[f ] = 0) limit. This motivates a change of variables from6059

p to y which eliminates the momentum derivative, leaving the simplified equation6060

∂tf =
1

E
C[f ] . (B.20)

We let χ̂i be the orthonormal polynomial basis on the interval [0,∞) with respect6061

to the weight function6062

fch =
1

ey + 1
, (B.21)

constructed as in Section B.1. fch is the Fermi-Dirac chemical equilibrium distribution6063

for massless fermions and with temperature T = 1/a. Therefore this ansatz is well6064

suited to distributions that are manifestly in chemical equilibrium (Υ = 1) or remain6065

close and with T ∝ 1/a, which we call dilution temperature scaling. Assuming that6066

f is such a distribution, one is motivated to decompose the distribution function as6067

f = fchχ , χ =
∑
i

diχ̂i (B.22)

and derive evolution equations for the coefficients, leading to a spectral method for6068

the Boltzmann-Einstein equation in a FLRW universe.6069

Using this ansatz equation Eq. (B.20) becomes6070

ḋk =

∫ ∞
0

1

E
χ̂kC[f ]dy . (B.23)
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We call this the chemical equilibrium method.6071

One also have the following expressions for the particle number density and energy6072

density6073

n =
gp

2π2a3

2∑
0

di
∫ ∞
0

fchχ̂iy
2dy , (B.24)

ρ =
gp

2π2a4

3∑
0

di
∫ ∞
0

fchχ̂iy
3dy .

Note that the sums truncate at 3 and 4 terms respectively, due to the fact that χ̂k6074

is orthogonal to all polynomials of degree less than k. This implies that in general, at6075

least four modes are required to capture both the particle number and energy flow.6076

More modes are needed if the non-thermal distortions are large and the back reaction6077

of higher modes on lower modes is significant.6078

Polynomial basis for systems far from chemical equilibrium6079

Our primary interest is in solving Eq. (B.34) for systems close to the kinetic equi-6080

librium distribution Eq. (3.76) but not necessarily in chemical equilibrium, a task for6081

which the method in the previous section is not well suited. For a general kinetic6082

equilibrium distribution, the temperature does not necessarily scale as T ∝ 1/a i.e.6083

the temperature is not controlled solely by dilution. For this reason, we will find it6084

more useful to make the change of variables z = p/T (t) rather than the scaling used in6085

Eq. (B.20). Here T (t) is to be viewed as the time dependent effective temperature of6086

the distribution f , a notion we will make precise later. With this change of variables,6087

the Boltzmann-Einstein equation becomes6088

∂tf − z

(
H +

Ṫ

T

)
∂zf =

1

E
C[f ] . (B.25)

To model a distribution close to kinetic equilibrium at temperature T and fugacity6089

Υ , we assume6090

f(t, z) = fΥ (t, z)ψ(t, z) , fΥ (z) =
1

Υ−1ez + 1
, (B.26)

where the kinetic equilibrium distribution fΥ depends on t because we are assuming6091

Υ is time dependent (with dynamics to be specified later).6092

We will solve Eq. (B.25) by expanding ψ in the basis of orthogonal polynomials6093

generated by the parameterized weight function6094

w(z) ≡ wΥ (z) ≡ z2fΥ (z) =
z2

Υ−1ez + 1
(B.27)

on the interval [0,∞). See Section B.1 for details on the construction of these poly-6095

nomials and their dependence on the parameter Υ . This choice of weight is physically6096

motivated by the fact that we are interested in solutions that describe massless par-6097

ticles not too far from kinetic equilibrium, but (potentially) far from chemical equi-6098

librium. We refer to the resulting spectral method as the chemical nonequilibrium6099

method.6100

We emphasize that we have made three important changes as compared to the6101

chemical equilibrium method:6102

1. We allow a general time dependence of the effective temperature parameter T ,6103

i.e., we do not assume dilution temperature scaling T = 1/a.6104
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2. We have replaced the chemical equilibrium distribution in the weight Eq. (B.21)6105

with a chemical nonequilibrium distribution fΥ , i.e., we introduced Υ .6106

3. We have introduced an additional factor of z2 to the functional form of the weight6107

as proposed in a different context in Refs.[314,315].6108

We note that the authors of [313] did consider the case of fixed chemical potential6109

imposed as an initial condition. This is not the same as an emergent chemical nonequi-6110

librium, i.e. time dependent Υ , that we study here, nor do they consider a z2 factor6111

in the weight. We borrowed the idea for the z2 prefactor from Ref.[315], where it was6112

found that including a z2 factor along with the nonrelativistic chemical equilibrium6113

distribution in the weight improved the accuracy of their method. Fortuitously, this6114

will also allow us to capture the particle number and energy flow with fewer terms6115

than required by the chemical equilibrium method.6116

Comparison of Bases6117

Before deriving the dynamical equations for the method outlined in Section B.2, we6118

illustrate the error inherent in approximating the chemical nonequilibrium distribu-6119

tion Eq. (3.76) with a chemical equilibrium distribution Eq. (3.75) whose temperature6120

is T = 1/a. Given a chemical nonequilibrium distribution6121

fΥ (y) =
1

Υ−1ey/(aT ) + 1
, (B.28)

we can attempt to write it as a perturbation of the chemical equilibrium distribution,6122

fΥ = fchχ (B.29)

as we would need to when using the method Eq. (B.23). We expand χ =
∑

i d
iχ̂i6123

in the orthonormal basis generated by fch and, using N terms, form the N -mode6124

approximation fNΥ to fΥ . The d
i are obtained by taking the L2(fchdy) inner product6125

of χ with the basis function χ̂i,6126

di =

∫
χ̂iχfchdy =

∫
χ̂ifΥ dy . (B.30)

Figures 69 and 70 show the normalized L1(dx) errors between fNΥ and fΥ , computed6127

via6128

errorN =

∫∞
0
|fΥ − fNΥ |dy∫∞
0
|fΥ |dy

. (B.31)

6129

We note the appearance of the reheating ratio6130

R ≡ aT (B.32)

in the denominator of Eq. (B.28), which comes from changing variables from z = p/T6131

in Eq. (B.27) to y = ap in order to compare with Eq. (B.21). Physically, R is the ratio6132

of the physical temperature T to the dilution controlled temperature scaling of 1/a.6133

In physical situations, including cosmology, R can vary from unity when dimensioned6134

energy scales influence dynamical equations for a. From the error plots we see that6135

for R sufficiently close to 1, the approximation performs well with a small number of6136

terms, even with Υ ̸= 1.6137

In the case of large reheating, we find that when R approaches and surpasses 2,6138

large spurious oscillations begin to appear in the expansion and they persist even when6139

a large number of terms are used, as seen in Figures 71 and 72, where we compare6140
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Fig. 69. Errors in expansion of Eq. (B.28) as a function of number of modes, Υ = 0.5.
Adapted from Ref. [21].
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Fig. 70. Errors in expansion of Eq. (B.28) as a function of number of modes, Υ = 1.5.
Adapted from Ref. [21].

fΥ /f
1/2
ch with fNΥ /f

1/2
ch for Υ = 1 andN = 20. See Ref. [21] for further discussion of the6141

origin of these oscillations. This demonstrates that the chemical equilibrium method6142

with dilution temperature scaling will perform extremely poorly in situations that6143

experience a large degree of reheating. For R ≈ 1, the benefit of including fugacity is6144

not as striking, as the chemical equilibrium basis is able to approximate Eq. (B.28)6145

reasonably well. However, for more stringent error tolerances including Υ can reduce6146
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the number of required modes in cases where the degree of chemical nonequilibrium6147

is large.
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Fig. 71. Approximation to Eq. (B.28) for Υ = 1 and R = 1.85 using the first 20 basis
elements generated by Eq. (B.21). Adapted from Ref. [21].
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Fig. 72. Approximation to Eq. (B.28) for Υ = 1 and R = 2 using the first 20 basis elements
generated by Eq. (B.21). Adapted from Ref. [21].

6148

Nonequilibrium dynamics6149

In this section we derive the dynamical equations for the chemical nonequilibrium6150
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method. In particular, we identify physically motivated dynamics for the effective6151

temperature and fugacity. Using Eq. (B.25) and the definition of ψ from Eq. (B.26)6152

we have6153

∂tψ +
1

fΥ

∂fΥ
∂Υ

Υ̇ψ − z

fΥ

(
H +

Ṫ

T

)
(ψ∂zfΥ + fΥ∂zψ) =

1

fΥE
C[fΥψ] . (B.33)

Denote the monic orthogonal polynomial basis generated by the weight Eq. (B.27)6154

by ψn, n = 0, 1, ... where ψn is degree n and call the normalized versions ψ̂n. Recall6155

that ψ̂n depend on t due to the Υ dependence of the weight function used in the6156

construction; therefore the method developed here is a moving-frame spectral method.6157

Consider the space of polynomial of degree less than or equal to N , spanned by ψ̂n,6158

n = 0, ..., N . For ψ in this subspace, we expand ψ =
∑N

j=0 b
jψ̂j and use Eq. (B.33) to6159

obtain6160 ∑
i

ḃiψ̂i =
∑
i

bi
z

fΥ

(
H +

Ṫ

T

)(
∂z(fΥ )ψ̂i + fΥ∂zψ̂i

)
(B.34)

−
∑
i

bi
(

˙̂
ψi +

1

fΥ

∂fΥ
∂Υ

Υ̇ ψ̂i

)
+

1

fΥE
C[f ] .

From this we see that projecting the Boltzmann-Einstein equation onto the finite6161

dimensional subspace gives6162

ḃk =
∑
i

bi

(
H +

Ṫ

T

)(
⟨ z
fΥ
ψ̂i∂zfΥ , ψ̂k⟩+ ⟨z∂zψ̂i, ψ̂k⟩

)
(B.35)

−
∑
i

biΥ̇

(
⟨ 1
fΥ

∂fΥ
∂Υ

ψ̂i, ψ̂k⟩+ ⟨
∂ψ̂i

∂Υ
, ψ̂k⟩

)
+ ⟨ 1

fΥE
C[f ], ψ̂k⟩ ,

where ⟨·, ·⟩ denotes the inner product defined by the weight function Eq. (B.27),6163

⟨h1, h2⟩ =
∫ ∞
0

h1(z)h2(z)wΥ (z)dz . (B.36)

The the collision term contains polynomial nonlinearities when multiple coupled dis-6164

tribution are being modeled using a 2-2 collision operator Eq. (B.15), while the other6165

terms are linear.6166

To isolate the linear part, we define matrices6167

Ak
i (Υ ) ≡⟨

z

fΥ
ψ̂i∂zfΥ , ψ̂k⟩+ ⟨z∂zψ̂i, ψ̂k⟩ , (B.37)

Bk
i (Υ ) ≡Ck

i (Υ ) +Dk
i (Υ ), Ck

i ≡ Υ ⟨
1

fΥ

∂fΥ
∂Υ

ψ̂i, ψ̂k⟩, Dk
i ≡ Υ ⟨

∂ψ̂i

∂Υ
, ψ̂k⟩ .

With these definitions, the equations for the bk become6168

ḃk =

(
H +

Ṫ

T

)∑
i

Ak
i (Υ )b

i − Υ̇

Υ

∑
i

Bk
i (Υ )b

i + ⟨ 1

fΥE
C[f ], ψ̂k⟩ . (B.38)

See Section B.1 for details on how to recursively construct the ∂zψ̂i. We showed how6169

to compute the inner products ⟨ψ̂k, ∂Υ ψ̂k⟩ in Section B.1. In Eq. (B.9)-Eq. (B.13) we6170
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proved that that both A and B are lower triangular and show that the only inner6171

products involving the ∂Υ ψ̂i that are required in order to compute A and B are those6172

the above mentioned diagonal elements, ⟨ψ̂k, ∂Υ ψ̂k⟩.6173

We fix the dynamics of T and Υ by imposing the conditions6174

b0(t)ψ̂0(t) = 1 , b1(t) = 0 . (B.39)

In other words,6175

f(t, z) = fΥ (t, z) (1 + ϕ(t, z)) , ϕ =

N∑
i=2

biψ̂i . (B.40)

This reduces the number of degrees of freedom in Eq. (B.38) from N + 3 to N + 1.6176

In other words, after enforcing Eq. (B.39), Eq. (B.38) constitutes N +1 equations for6177

the remaining N + 1 unknowns, b2, ..., bN , Υ , and T . We will call T and Υ the first6178

two “modes”, as their dynamics arise from imposing the conditions Eq. (B.39) on the6179

zeroth and first order coefficients in the expansion. We will solve for their dynamics6180

explicitly below.6181

To see the physical motivation for the choices Eq. (B.39), consider the particle6182

number density and energy density. Using orthonormality of the ψ̂i and Eq. (B.39)6183

we have6184

n =
gpT

3

2π2

∑
i

bi
∫ ∞
0

fΥ ψ̂iz
2dz =

gpT
3

2π2

∑
i

bi⟨ψ̂i, 1⟩ (B.41)

=
gpT

3

2π2
b0⟨ψ̂0, 1⟩ =

gpT
3

2π2
⟨1, 1⟩ ,

ρ =
gpT

4

2π2

∑
i

bi
∫ ∞
0

fΥ ψ̂iz
3dz =

gpT
4

2π2

∑
i

bi⟨ψ̂i, z⟩ (B.42)

=
gpT

4

2π2

(
b0⟨ψ̂0, z⟩+ b1⟨ψ̂1, z⟩

)
=
gpT

4

2π2
⟨1, z⟩ .

These, together with the definition of the weight function Eq. (B.27), imply6185

n =
gpT

3

2π2

∫ ∞
0

fΥ z
2dz , (B.43)

ρ =
gpT

4

2π2

∫ ∞
0

fΥ z
3dz . (B.44)

Equations (B.43) and (B.44) show that the first two modes, T and Υ , with time6186

evolution fixed by Eq. (B.39) cause the chemical nonequilibrium distribution fΥ to6187

capture the number density and energy density of the system exactly. This fact is6188

very significant, as it implies that within the chemical nonequilibrium approach as6189

long as the back-reaction from the non-thermal distortions is small (meaning that6190

the evolution of T (t) and Υ (t) is not changed significantly when more modes are6191

included), all the effects relevant to the computation of particle and energy flow are6192

modeled by the time evolution of T and Υ alone and no further modes are necessary.6193

This gives a clear separation between the averaged physical quantities, characterized6194

by fΥ , and the momentum dependent non-thermal distortions as captured by6195

ϕ =

N∑
i=2

biψ̂i . (B.45)
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One should contrast this chemical nonequilibrium behavior with the chemical6196

equilibrium method, where a minimum of four modes is required to describe the6197

number and energy densities, as shown in Eq. (B.24). Moreover we will show that6198

convergence to the desired precision is faster in the chemical nonequilibrium approach6199

as compared to chemical equilibrium. Due to the high cost of numerically integrating6200

realistic collision integrals of the form Eq. (B.15), this fact can be very significant in6201

applications. We remark that the relations Eq. (B.43) are the physical motivation for6202

including the z2 factor in the weight function. All three modifications we have made6203

in constructing our new method, the introduction of an effective temperature, i.e.,6204

R ̸= 1, the generalization to chemical nonequilibrium fΥ , and the introduction of z26205

to the weight, Eq. (B.32), were needed to obtain the properties Eq. (B.43), but it is6206

the introduction of z2 that reduces the number of required modes and hence reduces6207

the computational cost.6208

With b0 and b1 fixed as in Eq. (B.39) we can solve the equations for ḃ0 and ḃ16209

from Eq. (B.38) for Υ̇ and Ṫ to obtain6210

Υ̇ /Υ =
(Ab)1⟨ 1

fΥEC[f ], ψ̂0⟩ − (Ab)0⟨ 1
fΥEC[f ], ψ̂1⟩

[Υ∂Υ ⟨1, 1⟩/(2||ψ0||) + (Bb)0](Ab)1 − (Ab)0(Bb)1
, (B.46)

Ṫ /T =
(Bb)1⟨ 1

fΥEC[f ], ψ̂0⟩ − ⟨ 1
fΥEC[f ], ψ̂1⟩[Υ∂Υ ⟨1, 1⟩/(2||ψ0||) + (Bb)0]

[Υ∂Υ ⟨1, 1⟩/(2||ψ0||) + (Bb)0](Ab)1 − (Ab)0(Bb)1
−H

=
1

(Ab)1

(
(Bb)1Υ̇ /Υ − ⟨ 1

fΥE
C[f ], ψ̂1⟩

)
−H . (B.47)

Here (Ab)n =
∑N

j=0A
n
j b

j and similarly for B and || · || is the norm induced by6211

⟨·, ·⟩. In deriving this, we used6212

ḃ0 =
1

2||ψ0||
Υ̇ ∂Υ ⟨1, 1⟩ , ∂Υ ⟨1, 1⟩ =

∫ ∞
0

z2

(ez/2 + Υe−z/2)2
dz , (B.48)

which comes from differentiating Eq. (B.39).6213

It is easy to check that when the collision operator vanishes, then the above system6214

is solved by6215

Υ = constant ,
Ṫ

T
= −H , bn = constant , n > 2 , (B.49)

i.e., the fugacity and non-thermal distortions are ‘frozen’ into the distribution and6216

the temperature satisfies dilution scaling T ∝ 1/a.6217

When the collision term becomes small, Eq. (B.49) motivates another change of6218

variables. Letting T = (1 + ϵ)/a gives the equation6219

ϵ̇ =
1 + ϵ

(Ab)1

(
(Bb)1Υ̇ /Υ − ⟨ 1

fΥE
C[f ], ψ̂1⟩

)
. (B.50)

Solving this in place of Eq. (B.47) when the collision terms are small avoids having to6220

numerically track the free-streaming evolution. In particular this will ensure conser-6221

vation of comoving particle number, which equals a function of Υ multiplied by (aT )3,6222

to much greater precision in this regime as well as resolve the freeze-out temperatures6223

more accurately.6224

6225
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Projected Dynamics are Well-defined:6226

The following calculation shows that, for a distribution initially in kinetic equilibrium,6227

the determinant factor in the denominator of Eq. (B.46) is nonzero and hence the6228

dynamics for T and Υ , as well as the remainder of the projected system, are well-6229

defined, at least for sufficiently small times.6230

Kinetic equilibrium implies the initial conditions b0 = ||ψ0||, bi = 0, i > 0. There-6231

fore we have6232

K ≡(Υ∂Υ ⟨1, 1⟩/(2||ψ0||) + (Bb)0)(Ab)1 − (Ab)0(Bb)1 (B.51)

=(C0
0A

1
0 −A0

0C
1
0 )(b

0)2 +
[
(D0

0A
1
0 −A0

0D
1
0)(b

0)2 + Υ∂Υ ⟨1, 1⟩/(2||ψ0||)A1
0b

0
]

≡K1 +K2 .

6233

K1 =⟨ 1

1 + Υe−z
, 1⟩⟨ −z

1 + Υe−z
ψ̂1, ψ̂0⟩ − ⟨

−z
1 + Υe−z

, ψ̂0⟩⟨
1

1 + Υe−z
ψ̂1, 1⟩ . (B.52)

Inserting the formula for ψ̂1 from Eq. (B.1) we find6234

K1 =− 1

||ψ1|| ||ψ0||

[
⟨ 1

1 + Υe−z
, ψ̂0⟩⟨

z2

1 + Υe−z
, ψ̂0⟩ − ⟨

z

1 + Υe−z
, ψ̂0⟩2

]
. (B.53)

The Cauchy-Schwarz inequality applied to the inner product with weight function6235

w̃ =
w

1 + Υe−z
ψ̂0 (B.54)

together with linear independence of 1 and z implies that the term in brackets is6236

positive and so K1 < 0 at t = 0. For the second term, noting that D1
0 = 0 by6237

orthogonality and using Eq. (B.7), we have6238

K2 =[⟨∂Υ ψ̂0, ψ̂0⟩||ψ0||+ ∂Υ ⟨1, 1⟩/(2||ψ0||)]ΥA1
0||ψ0|| = 0 . (B.55)

This proves that K is nonzero at t = 0.6239

6240

B.3 Validation6241

We will validate our numerical method on an exactly solvable model problem6242

∂tf − pH∂pf =M

(
1

Υ−1ep/Teq + 1
− f(p, t)

)
, f(p, 0) =

1

ep/Teq(0) + 1
, (B.56)

where M is a constant with units of energy and we choose units in which it is equal6243

to 1. This model describes a distribution that is attracted to a given equilibrium6244

distribution at a prescribed time dependent temperature Teq(t) and fugacity Υ . This6245

type of an idealized scattering operator, without fugacity, was first introduced in [48].6246

By changing coordinates y = a(t)p we find6247

∂tf(y, t) =
1

Υ−1 exp[y/(a(t)Teq(t))] + 1
− f(y, t) . (B.57)
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which has as solution6248

f(y, t) =

∫ t

0

es−t

Υ−1 exp[y/(a(s)Teq(s))] + 1
ds+

e−t

exp[y/(a(0)Teq(0))] + 1
. (B.58)

We now transform to z = p/T (t) where the temperature T of the distribution f is6249

defined as in Section B.2. Therefore, we have the exact solution to6250

∂tf − z

(
H +

Ṫ

T

)
∂zf =

1

Υ−1ezT/Teq + 1
− f(z, t) (B.59)

given by6251

f(z, t) =

∫ t

0

es−t

Υ−1 exp[a(t)T (t)z/(a(s)Teq(s))] + 1
ds (B.60)

+
e−t

exp[a(t)T (t)z/(a(0)Teq(0))] + 1
.

We use this to test the chemical equilibrium and chemical nonequilibrium methods6252

under two different conditions.6253

Reheating Test6254

First we compare the chemical equilibrium and nonequilibrium methods in a scenario6255

that exhibits reheating. Motivated by applications to cosmology, we choose a scale6256

factor evolving as in the radiation dominated era, a fugacity Υ = 1, and choose an6257

equilibrium temperature that exhibits reheating like behavior with aTeq increasing6258

for a period of time,6259

a(t) =

(
t+ b

b

)1/2

, Teq(t) =
1

a(t)

(
1 +

1− e−t

e−(t−b) + 1
(R− 1)

)
, (B.61)

where R is the desired reheating ratio. Note that (aTeq)(0) = 1 and (aTeq)(t)→ R as6260

t→∞. Qualitatively, this is reminiscent of the dynamics of neutrino freeze-out, but6261

the range of reheating ratio for which we will test our method is larger than found6262

there.6263

We solved Eq. (B.57) and Eq. (B.59) numerically using the chemical equilibrium6264

and chemical nonequilibrium methods respectively for t ∈ [0, 10] and b = 5 and the6265

cases R = 1.1, R = 1.4, as well as the more extreme ratio of R = 2. The bases of6266

orthogonal polynomials were generated numerically using the recursion relations from6267

B.1. For the applications we are considering, where the solution is a small perturba-6268

tion of equilibrium, only a small number of terms are required and so the numerical6269

challenges associated with generating a large number of such orthogonal polynomials6270

are not an issue.6271

6272

Chemical Equilibrium Method:6273

We solved Eq. (B.57) using the chemical equilibrium method, with the orthonormal6274

basis defined by the weight function Eq. (B.21) forN = 2, ..., 10 modes (mode numbers6275

n = 0, ..., N − 1) and prescribed single step relative and absolute error tolerances of6276

10−13 for the numerical integration, and with asymptotic reheating ratios of R = 1.1,6277

R = 1.4, and R = 2.6278

In Figures 73 and 74 we show the maximum relative error in the number densities6279

and energy densities respectively over the time interval [0, 10] for various numbers of6280
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Fig. 73. Maximum relative error in particle number density. Adapted from Ref. [21].
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Fig. 74. Maximum relative error in energy density. Adapted from Ref. [21].

computed modes. The particle number density and energy density are accurate, up to6281

the integration tolerance level, for 3 or more and 4 or more modes respectively. This6282

is consistent with Eq. (B.24) which shows the number of modes required to capture6283

each of these quantities. However, fewer modes than these minimum values lead to a6284

large error in the corresponding moment of the distribution function.6285

To show that the numerical integration accurately captures the mode coefficients6286

of the exact solution, Eq. (B.58), in Figure 75 we show the error between the computed6287
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Fig. 75. Maximum error in mode coefficients. Adapted from Ref. [21].
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Fig. 76. Maximum ratio of L1 error between computed and exact solutions to L1 norm of
the exact solution. Adapted from Ref. [21].

coefficients and actual coefficients, denoted by b̃n and bn respectively,6288

errorn = max
t
|b̃n(t)− bn(t)| , (B.62)

where the evolution of the system was computed using N = 10 modes.6289

In Figure 76 we show the error between the exact solution f , and the numerical6290

solution fN computed using N = 2, ..., 10 modes over the solution time interval,6291
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where we define the error by6292

errorN = max
t

∫
|f − fN |dy∫
|f |dy

. (B.63)

For R = 1 and R = 1.4 the chemical equilibrium method works reasonably well (as
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1

1.1

Fig. 77. Approximate and exact solution for a reheating ratio R = 2 and N = 10 modes.
Adapted from Ref. [21].
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Fig. 78. L1 error ratio as a function of time for N = 10 modes. Adapted from Ref. [21].

6293

long as the number of modes is at least 4, so that the energy and number densities6294
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are properly captured) but for R = 2 the approximate solution exhibits spurious6295

oscillations, as seen in Figure 77, and has significantly degraded L1 error; this behavior6296

is expected based on the results in Section B.2. Further clarifying the behavior, in6297

Figure 78 we show the L1 error ratio as a function of time for N = 10 modes. In6298

the R = 2 case we see that the error increases as the reheating ratio approaches6299

its asymptotic value of R = 2 as t → ∞. As we will see, our methods achieves a6300

much higher accuracy for a small number of terms in the case of large reheating ratio6301

due to the replacement of dilution temperature scaling with the dynamical effective6302

temperature T .6303

Chemical Non-Equilibrium Method:6304

We now solve Eq. (B.57) using the chemical nonequilibrium method, with the or-6305

thonormal basis defined by the weight function Eq. (B.27) for N = 2, ..., 10 modes, a6306

prescribed numerical integration tolerance of 10−13, and asymptotic reheating ratios6307

of R = 1.1, R = 1.4, and R = 2. Recall that we are referring to T and Υ as the6308

first two modes (n = 0 and n = 1). In Figures 79 and 80 we show the maximum6309

relative error over the time interval [0, 10] in the number densities and energy densi-6310

ties respectively for various numbers of computed modes. Even for only 2 modes, the6311

number and energy densities are accurate up to the integration tolerance level. This6312

is in agreement with the analytical expressions in Eq. (B.43).6313

To show that the numerical integration accurately captures the mode coefficients6314

of the exact solution, Eq. (B.58), in Figure 81 we show the error in the computed6315

mode coefficients Eq. (B.62), where the evolution of the system was computed using6316

N = 10 modes. In Figure 82 we show the error between the approximate and exact6317

solutions, computed as in Eq. (B.63) for N = 2, ..., 10 and R = 1.1, R = 1.4, and6318

R = 2 respectively. For most mode numbers and R values, the error using 2 modes6319

is substantially less than the error from the chemical equilibrium method using 46320

modes. The result is most dramatic for the case of large reheating, R = 2, where6321

the spurious oscillations from the chemical equilibrium solution are absent in our6322

method, as seen in Figure 83, as compared to the chemical equilibrium method in6323

Figure 77. Note that we plot from z ∈ [0, 15] in comparison to y ∈ [0, 30] in Figure6324

83 due to the relation z = y/R as discussed in Section B.2. Additionally, the error no6325

longer increases as t→∞, as it did for the chemical equilibrium method, see Figure6326

84. In fact it decreases since the exact solution approaches chemical equilibrium at a6327

reheated temperature and hence can be better approximated by fΥ .6328

In summary, in addition to the reduction in the computational cost when going6329

from 4 to 2 modes, we also reduce the error compared to the chemical equilibrium6330

method, all while accurately capturing the number and energy densities.6331
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Fig. 79. Maximum relative error in particle number density. Adapted from Ref. [21].

2 3 4 5 6 7 8 9 10 11

2

2.5

3

3.5

4

4.5

5

10
-13

Fig. 80. Maximum relative error in energy density. Adapted from Ref. [21].
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Fig. 81. Maximum error in mode coefficients. Adapted from Ref. [21].
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Fig. 82. Maximum ratio of L1 error between computed and exact solutions to L1 norm of
the exact solution. Adapted from Ref. [21].
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Fig. 83. Approximate and exact solution for R = 2 obtained with two modes. Adapted from
Ref. [21].
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Fig. 84. L1 error ratio as a function of time for n = 10 modes. Adapted from Ref. [21].
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C Neutrino Collision Integrals6332

C.1 Collision Integral Inner Products6333

Having detailed our method for solving the Boltzmann-Einstein equation in Appendix6334

B, in this appendix we address the computation of collision integrals for neutrino6335

processes; see also [19]. To solve for the mode coefficients using Eq. (B.38), we must6336

evaluate the collision operator inner products6337

Rk ≡⟨
1

fΥE1
C[f1], ψ̂k⟩ =

∫ ∞
0

ψ̂k(z1)C[f1](z1)
z21
E1

dz1 (C.1)

=
1

2

∫
ψ̂k(z1)

∫ [
f3(p3)f4(p

4)f1(p1)f
2(p2)− f1(p1)f2(p2)f3(p3)f4(p4)

]
× S|M|2(s, t)(2π)4δ(∆p)

4∏
i=2

d3pi
2(2π)3Ei

z21
E1

dz1 ,

=
2(2π)3

8π
T−31

∫
Gk(p1, p2, p3, p4)S|M|2(s, t)(2π)4δ(∆p)

4∏
i=1

d3pi
2(2π)3Ei

,

=2π2T−31

∫
Gk(p1, p2, p3, p4)S|M|2(s, t)(2π)4δ(∆p)

4∏
i=1

δ0(p
2
i −m2

i )
d4pi
(2π)3

,

Gk =ψ̂k(z1)
[
f3(p3)f4(p4)f

1(p1)f
2(p2)− f1(p1)f2(p2)f3(p3)f4(p4)

]
, f i = 1− fi .

Note that Rk only uses information about the distributions at a single spacetime6338

point, and so we can work in a local orthonormal basis for the momentum. Among6339

other things, this implies that p2 = pαpβηαβ where η is the Minkowski metric6340

ηαβ = diag(1,−1,−1,−1) . (C.2)

From Eq. (C.1), we see that a crucial input into the chemical nonequilibrium6341

spectral method with 2↔ 2 reactions is the ability to efficiently compute a numerical6342

approximation to integrals of the form6343

M ≡
∫
G(p1, p2, p3, p4)S|M|2(s, t)(2π)4δ(∆p)

4∏
i=1

δ0(p
2
i −m2

i )
d4pi
(2π)3

, (C.3)

G(p1, p2, p3, p4) = g1(p1)g2(p2)g3(p3)g4(p4) ,

for some functions gi. Even after eliminating the delta functions in Eq. (C.3), we6344

are still left with an 8 dimensional integral. To facilitate numerical computation, we6345

must analytically reduce this expression down to fewer dimensions. Fortunately, the6346

systems we are interested in have a large amount of symmetry that can be utilized6347

for this purpose.6348

The distribution functions we are concerned with are isotropic in some frame6349

defined by a unit timelike vector U , i.e. they depend only on the four-momentum6350

only through pi · U . The same is true of the basis functions ψ̂k, and hence the gi6351

depend only on pi · U as well. In [309,310,311] approaches are outlined that reduce6352

integrals of this type down to 3 dimensions. We outline the method from [310,311], as6353

applied to our spectral method solver, in appendix C.3. However, the integrand one6354

obtains from these methods is only piecewise smooth or has an integration domain6355

with a complicated geometry. This presents difficulties for the integration routine we6356

employ, which utilizes adaptive mesh refinement to ensure the desired error tolerance.6357
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We take an alternative approach that, for the scattering kernels found in e±, neutrino6358

interactions, reduces the problem nested integrals of depth three while also resulting in6359

an integrand with better smoothness properties. In our comparison with the method6360

in [310,311], the resulting formula evaluates significantly faster under the numerical6361

integration scheme we used. The derivation presented here expands on what is found6362

in [30].6363

Simplifying the Collision Integral6364

Our strategy for simplifying the collision integrals is as follows. We first make a6365

change of variables designed to put the 4-momentum conserving delta function in6366

a particularly simple form, allowing for the integral to be reduced from 16 to 126367

dimensions. The remaining four delta functions, which impose the mass shell con-6368

straints, are then seen to reduce to integration over a product of spheres. The simple6369

form of the submanifold that these delta function restrict us to allows us to use the6370

method in chapter A to analytically evaluate all four of the remaining delta functions6371

simultaneously. During this process, the isotropy of the system in the frame given6372

by the 4-vector U allows for further reduction of the dimensionality by analytically6373

evaluating several of the angular integrals.6374

The change of variables that simplifies the 4-momentum conserving delta function6375

is given by6376

p = p1 + p2 , q = p1 − p2 , p′ = p3 + p4 , q′ = p3 − p4 . (C.4)

The Jacobian of this transformation is 1/28. Therefore using Lemma 2 we find6377

M =
1

256(2π)8

∫
G((p+ q) · U/2, (p− q) · U/2, (p′ + q′) · U/2, (p′ − q′) · U/2)

× S|M|2δ(p− p′)δ((p+ q)2/4−m2
1)δ((p− q)2/4−m2

2)δ((p
′ + q′)2/4−m2

3)

× δ((p′ − q′)2/4−m2
4)1p0>|q0|1(p′)0>|(q′)0|d

4pd4qd4p′d4q′ . (C.5)

Next eliminate the integration over p′ using δ(p− p′) and then use Fubini’s theorem6378

to write6379

M =
1

256(2π)8

∫ [ ∫
G((p+ q) · U/2, (p− q) · U/2, (p′ + q′) · U/2, (p′ − q′) · U/2)

× 1p0>|q0|1p0>|(q′)0|S|M|2δ((p+ q)2/4−m2
1)δ((p− q)2/4−m2

2)

× δ((p+ q′)2/4−m2
3)δ((p− q′)2/4−m2

4)d
4qd4q′

]
d4p . (C.6)

Subsequent computations will justify this use of Fubini’s theorem.6380

Since p0 > 0 we have dp ̸= 0 and so we can use Corollary 3 of the coarea formula6381

to decompose this into an integral over the center of mass energy s = p2,6382

M =
1

256(2π)8

∫ ∞
s0

∫ [ ∫
1p0>|q0|1p0>|(q′)0|S|M|2F (p, q, q′)δ((p+ q)2/4−m2

1)

(C.7)

× δ((p− q)2/4−m2
2)δ((p+ q′)2/4−m2

3)δ((p− q′)2/4−m2
4)d

4qd4q′
]
δ(p2 − s)d4pds ,

F (p, q, q′) = G((p+ q) · U/2, (p− q) · U/2, (p+ q′) · U/2, (p− q′) · U/2) ,
s0 = max{(m1 +m2)

2, (m3 +m4)
2} .
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The lower bound on s comes from the fact that both p1 and p2 are future timelike6383

and hence6384

p2 = m2
1 +m2

2 + 2p1 · p2 ≥ m2
1 +m2

2 + 2m1m2 = (m1 +m2)
2 . (C.8)

The other inequality is obtained by using p = p′.6385

Note that the integral in brackets in Eq. (C.7) is invariant under SO(3) rotations6386

of p in the frame defined by U . Therefore we obtain6387

M =
1

256(2π)8

∫ ∞
s0

∫ ∞
0

K(s, p)
4π|p⃗|2

2p0
d|p⃗|ds , p0 = p · U =

√
|p⃗|2 + s , (C.9)

K(s, p) =

∫
1p0>|q0|1p0>|(q′)0|S|M|2F (p, q, q′)δ((p+ q)2/4−m2

1)δ((p− q)2/4−m2
2)

× δ((p+ q′)2/4−m2
3)δ((p− q′)2/4−m2

4)d
4qd4q′ ,

where |p⃗| denotes the norm of the spacial component of p and in the formula for6388

K(s, p), p is any four vector whose spacial component has norm |p⃗| and timelike6389

component
√
|p⃗|2 + s. Note that in integrating over δ(p2 − s)dp0, only the positive6390

root was taken, due to the indicator functions in the K(s, p).6391

We now simplifyK(s, p) for fixed but arbitrary p and s that satisfy p0 =
√
|p⃗|2 + s6392

and s > s0. These conditions imply p is future timelike, hence we can we can change6393

variables in q, q′ by an element of Q ∈ SO(1, 3) so that6394

Qp = (
√
s, 0, 0, 0) , QU = (α, 0, 0, δ) , (C.10)

where6395

α =
p · U√
s
, δ =

1√
s

(
(p · U)2 − s

)1/2
. (C.11)

Note that the delta functions in the integrand imply p ± q is timelike (or null if the6396

corresponding mass is zero). Therefore p0 > ±q0 iff p∓ q is future timelike (or null).6397

This condition is preserved by SO(1, 3) hence p0 > |q0| in one frame iff it holds in6398

every frame. Similar comments apply to p0 > |(q′)0| and so K(s, p) has the same6399

formula in the transformed frame as well.6400

We now evaluate the measure that is induced by the delta functions, using the6401

method given in chapter A. We have the constraint function6402

Φ(q, q′) = ((p+q)2/4−m2
1, (p−q)2/4−m2

2, (p+q
′)2/4−m2

3, (p−q′)2/4−m2
4) (C.12)

and must compute the solution set Φ(q, q′) = 0. Adding and subtracting the first two6403

components and the last two respectively, we have the equivalent conditions6404

s+ q2

2
= m2

1 +m2
2 , p · q = m2

1 −m2
2 ,

s+ (q′)2

2
= m2

3 +m2
4 , p · q′ = m2

3 −m2
4 .

(C.13)

If we let (q0, q⃗), ((q′)0, q⃗′) denote the spacial components in the frame defined by6405

p = (
√
s, 0, 0, 0) we have another set of equivalent conditions6406

q0 =
m2

1 −m2
2√

s
, |q⃗|2 =

(m2
1 −m2

2)
2

s
+ s− 2(m2

1 +m2
2) , (C.14)

(q′)0 =
m2

3 −m2
4√

s
, |q⃗′|2 =

(m2
3 −m2

4)
2

s
+ s− 2(m2

3 +m2
4) .
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Note that if these hold then using s ≥ s0 we obtain6407

|q0|
p0
≤ |m2

1 −m2
2|

(m1 +m2)2
< 1 (C.15)

and similarly for q′. Hence the conditions in the indicator functions are satisfied and6408

we can drop them from the formula for K(s, p).6409

The conditions Eq. (C.14) imply that our solution set is a product of spheres in q⃗6410

and q⃗′, as long as the conditions are consistent i.e. so long as |q⃗|, |q⃗′| > 0. To see that6411

this holds for almost every s, first note6412

d

ds
|q⃗|2 = 1− (m2

1 −m2
2)

2

s2
> 0 (C.16)

since s ≥ (m1 +m2)
2. At s = (m1 +m2)

2, |q⃗|2 = 0. Therefore, for s > s0 we have6413

|q⃗| > 0 and similarly for q′. Hence we have the result6414

Φ−1(0) = {q0} ×B|q⃗| × {(q′)0} ×B|q⃗′| , (C.17)

where Br denotes the radius r ball centered at 0. We will parametrize this by spherical6415

angular coordinates in q and q′.6416

We now compute the induced volume form. First consider the differential6417

DΦ =


1
2 (q + p)αηαβdq

β

1
2 (q − p)

αηαβdq
β

1
2 (q
′ + p)αηαβdq

′β

1
2 (q
′ − p)αηαβdq

′β

 . (C.18)

Evaluating this on the coordinate vector fields ∂q0 , ∂r we obtain6418

DΦ(∂q0) =


1
2 (q

0 +
√
s)

1
2 (q

0 −
√
s)

0
0

 , DΦ(∂r) =

−
1
2 |q⃗|
− 1

2 |q⃗|
0
0

 =

−
1
2r
− 1

2r
0
0

 . (C.19)

Similar results hold for q′. Therefore we have the determinant6419

det
(
DΦ(∂q0) DΦ(∂r) DΦ(∂(q′)0) DΦ(∂r′)

)
=
s

4
rr′. (C.20)

Note that this determinant being nonzero implies that our use of Fubini’s theorem in6420

Eq. (C.6) was justified.6421

By Eq. (A.15) and Eq. (A.31), the above computations imply that the induced6422

volume measure is6423

δ((p+ q)2/4−m2
1)δ((p− q)2/4−m2

2)δ((p+ q′)2/4−m2
3)δ((p− q′)2/4−m2

4)d
4qd4q′

(C.21)

=
4

srr′
i(∂q0 ,∂r,∂(q′)0 ,∂r′ )

(
r2 sin(ϕ)dq0drdθdϕ

)
∧
(
(r′)2 sin(ϕ′)d(q′)0dr′dθ′dϕ′

)
=

4rr′

s
sin(ϕ) sin(ϕ′)dθdϕdθ′dϕ′ ,

where6424

r =
1√
s

√
(s− (m1 +m2)2)(s− (m1 −m2)2) , (C.22)

r′ =
1√
s

√
(s− (m3 +m4)2)(s− (m3 −m4)2) .
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Consistent with our interest in the Boltzmann equation, we assume F factors as6425

F (p, q, q′) =F12((p+ q) · U/2, (p− q) · U/2)F34((p+ q′) · U/2, (p− q′) · U/2) (C.23)

≡G12(p · U, q · U)G34(p · U, q′ · U) .

For now we suppress the dependence on p, as it is not of immediate concern. In our6426

chosen coordinates where U = (α, 0, 0, δ) we have6427

q · U = q0α− rδ cos(ϕ) (C.24)

and similarly for q′. To compute6428

K(s, p) =
4rr′

s

∫ [∫
S|M|2(s, t)G34 sin(ϕ

′)dθ′dϕ′
]
G12 sin(ϕ)dθdϕ (C.25)

first recall6429

t =(p1 − p3)2 =
1

4
(q − q′)2 =

1

4
(q2 + (q′)2 − 2(q0(q′)0 − q⃗ · q⃗′)) , (C.26)

q⃗ · q⃗′ = rr′(cos(θ − θ′) sin(ϕ) sin(ϕ′) + cos(ϕ) cos(ϕ′)) .

Together, these imply that the integral in brackets in Eq. (C.25) equals6430 ∫ π

0

∫ 2π

0

S|M|2(s, t(cos(θ − θ′) sin(ϕ) sin(ϕ′) + cos(ϕ) cos(ϕ′))) (C.27)

×G34((q
′)0α− r′δ cos(ϕ′)) sin(ϕ′)dθ′dϕ′

=

∫ 1

−1

∫ 2π

0

S|M|2(s, t(cos(ψ) sin(ϕ)
√
1− y2 + cos(ϕ)y))G34((q

′)0α− r′δy)dψdy .

Therefore6431

K(s, p) =
8πrr′

s

∫ 1

−1

[∫ 1

−1

(∫ 2π

0

S|M|2(s, t(cos(ψ)
√
1− y2

√
1− z2 + yz))dψ

)
(C.28)

×G34((q
′)0α− r′δy)dy

]
G12(q

0α− rδz)dz ,

where6432

t(x) =
1

4
((q0)2 − r2 + ((q′)0)2 − (r′)2 − 2q0(q′)0 + 2rr′x), (C.29)

=
1

4
((q0 − (q′)0)2 − r2 − (r′)2 + 2rr′x) .

C.2 Electron and Neutrino Collision Integrals6433

In this section, we further simplify the various integrals of the scattering matrix6434

element that appear in the scattering kernels for processes involving e± and neutrinos.6435

For reference, we collect the important results from Section C.1 on evaluation of the6436

scattering kernel integrals Eq. (C.1), where we have changed notation from |p⃗| to p.6437

M =
1

256(2π)7

∫ ∞
s0

∫ ∞
0

K(s, p)
p2

p0
dpds , (C.30)
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6438

K(s, p) =
8πrr′

s

∫ 1

−1

[∫ 1

−1

(∫ 2π

0

S|M|2(s, t(cos(ψ)
√
1− y2

√
1− z2 + yz))dψ

)
(C.31)

×G34((q
′)0α− r′δy)dy

]
G12(q

0α− rδz)dz .

where6439

p0 =
√
p2 + s , α =

p0√
s
, δ =

p√
s
, q0 =

m2
1 −m2

2√
s

, (q′)0 =
m2

3 −m2
4√

s
, (C.32)

r =
1√
s

√
(s− (m1 +m2)2)(s− (m1 −m2)2) ,

r′ =
1√
s

√
(s− (m3 +m4)2)(s− (m3 −m4)2) ,

t(x) =
1

4
((q0 − (q′)0)2 − r2 − (r′)2 + 2rr′x) ,

s0 =max{(m1 +m2)
2, (m3 +m4)

2} .

and6440

F (p, q, q′) =F12((p+ q) · U/2, (p− q) · U/2)F34((p+ q′) · U/2, (p− q′) · U/2) (C.33)

≡G12(p · U, q · U)G34(p · U, q′ · U) .

This is as far as we can simplify the collision integrals without more information6441

about the form of the matrix elements. The matrix elements for weak force scattering6442

processes involving neutrinos and e± in the limit |p| ≪ MW ,MZ , taken from [310,6443

311], are as follows

Process S|M|2
νe + ν̄e → νe + ν̄e 128G2

F (p1 · p4)(p2 · p3)
νe + νe → νe + νe 64G2

F (p1 · p2)(p3 · p4)
νe + ν̄e → νj + ν̄j 32G2

F (p1 · p4)(p2 · p3)
νe + ν̄j → νe + ν̄j 32G2

F (p1 · p4)(p2 · p3)
νe + νj → νe + νj 32G2

F (p1 · p2)(p3 · p4)
νe + ν̄e → e+ + e− 128G2

F [g
2
L(p1 · p4)(p2 · p3) + g2R(p1 · p3)(p2 · p4) + gLgRm

2
e(p1 · p2)]

νe + e− → νe + e− 128G2
F [g

2
L(p1 · p2)(p3 · p4) + g2R(p1 · p4)(p2 · p3)− gLgRm

2
e(p1 · p3)]

νe + e+ → νe + e+ 128G2
F [g

2
R(p1 · p2)(p3 · p4) + g2L(p1 · p4)(p2 · p3)− gLgRm

2
e(p1 · p3)]

Table 8. Matrix elements for electron neutrino processes where j = µ, τ , gL = 1
2
+ sin2 θW ,

gR = sin2 θW , sin2(θW ) ≈ 0.23 is the Weinberg angle, and GF = 1.16637 × 10−5GeV−2 is
Fermi’s constant.

6444

In the following subsections, we will analytically simplify Eq. (C.30) for each of6445

these processes.6446

Neutrino-neutrino scattering6447

Using Eq. (B.16), the matrix elements for neutrino-neutrino scattering νν → νν can6448
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Process S|M|2
νi + ν̄i → νi + ν̄i 128G2

F (p1 · p4)(p2 · p3)
νi + νi → νi + νi 64G2

F (p1 · p2)(p3 · p4)
νi + ν̄i → νj + ν̄j 32G2

F (p1 · p4)(p2 · p3)
νi + ν̄j → νi + ν̄j 32G2

F (p1 · p4)(p2 · p3)
νi + νj → νi + νj 32G2

F (p1 · p2)(p3 · p4)
νi + ν̄i → e+ + e− 128G2

F [g̃
2
L(p1 · p4)(p2 · p3) + g2R(p1 · p3)(p2 · p4) + g̃LgRm

2
e(p1 · p2)]

νi + e− → νi + e− 128G2
F [g̃

2
L(p1 · p2)(p3 · p4) + g2R(p1 · p4)(p2 · p3)− g̃LgRm

2
e(p1 · p3)]

νi + e+ → νi + e+ 128G2
F [g

2
R(p1 · p2)(p3 · p4) + g̃2L(p1 · p4)(p2 · p3)− g̃LgRm

2
e(p1 · p3)]

Table 9. Matrix elements for µ and τ neutrino processes where i = µ, τ , j = e, µ, τ , j ̸= i,
g̃L = gL − 1 = − 1

2
+ sin2 θW , gR = sin2 θW , sin2(θW ) ≈ 0.23 is the Weinberg angle, and

GF = 1.16637× 10−5GeV−2 is Fermi’s constant.

be simplified to6449

S|M|2 = C(p1 · p2)(p3 · p4) = C
s2

4
, (C.34)

where the coefficient C is given in table 10.6450

Process C

νi + νi → νi + νi, i ∈ {e, µ, τ} 64G2
F

νi + νj → νi + νj , i ̸= j, i, j ∈ {e, µ, τ} 32G2
F

Table 10. Matrix element coefficients for neutrino neutrino scattering processes.

From here we obtain6451

K(s, p) =
8πrr′

s

∫ 1

−1

[∫ 1

−1

(∫ 2π

0

S|M|2(s, t(cos(ψ)
√
1− y2

√
1− z2 + yz))dψ

)
(C.35)

×G34(p
0, (q′)0α− r′δy)dy

]
G12(p

0, q0α− rδz)dz

=4π2Crr′s

∫ 1

−1
G12(p

0, q0α− rδz)dz
∫ 1

−1
G34(p

0, (q′)0α− r′δy)dy .

Therefore6452

Mνν→νν =
C

256(2π)5
T 8

∫ ∞
0

s̃2
∫ ∞
0

[∫ 1

−1
G̃12(p̃

0,−p̃z)dz
∫ 1

−1
G̃34(p̃

0,−p̃y)dy
]
p̃2

p̃0
dp̃ds̃ ,

(C.36)

where the tilde quantities are obtained by non-dimensionalizing via scaling by T and6453

we have re-introduced the dependence of Gi,j on p0. If we want to emphasize the role6454

of C then we write Mνν→νν(C).6455

Neutrino-antineutrino scattering6456

Using Eq. (B.16), the matrix elements for neutrino antineutrino scattering νν̄ → νν̄6457
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can be simplified to6458

S|M|2 = C

(
s+ t

2

)2

, (C.37)

where the coefficient C is given in table 11.6459

Process C

νi + ν̄i → νi + ν̄i, i ∈ {e, µ, τ} 128G2
F

νi + ν̄i → νj + ν̄j , i ̸= j, i, j ∈ {e, µ, τ} 32G2
F

νi + ν̄j → νi + ν̄j , i ̸= j, i, j ∈ {e, µ, τ} 32G2
F

Table 11. Matrix element coefficients for neutrino neutrino scattering processes.

Using this we find6460 ∫ 2π

0

S|M|2(s, t(cos(ψ)
√
1− y2

√
1− z2 + yz))dψ (C.38)

=
πC

16
s2(3 + 4yz − y2 − z2 + 3y2z2) ≡ πC

16
s2q(y, z)

K(s, p) =
π2C

2
s2
∫ 1

−1

[∫ 1

−1
q(y, z)G34(p

0,−py)dy
]
G12(p

0,−pz)dz .

Therefore6461

Mνν̄→νν̄ =
C

2048(2π)5
T 8

∫ ∞
0

∫ ∞
0

s̃2
[ ∫ 1

−1

∫ 1

−1
q(y, z)G̃34(p̃

0,−p̃y)

G̃12(p̃
0,−p̃z)dydz

]
p̃2

p̃0
dp̃ds̃ .

If we want to emphasize the role of C then we write Mνν̄→νν̄(C). Note that due to6462

the polynomial form of the matrix element integral, the double integral in brackets6463

breaks into a linear combination of products of one dimensional integrals, meaning6464

that the nesting of integrals is again only three deep in practice.6465

Neutrino-antineutrino annihilation to electron-positrons6466

Using Eq. (B.16), the matrix elements for leptonic neutrino antineutrino annihilation6467

νν̄ → e+e− can be simplified to6468

S|M|2 = A

(
s+ t−m2

e

2

)2

+B

(
m2

e − t
2

)2

+ Cm2
e

s

2
, (C.39)

where the coefficients A,B,C are given in table 12.6469

Process A B C

νe + ν̄e → e+ + e− 128G2
F g

2
L 128G2

F g
2
R 128G2

F gLgR
νi + ν̄i → e+ + e−, i ∈ {µ, τ} 128G2

F g̃
2
L 128G2

F g
2
R 128G2

F g̃LgR

Table 12. Matrix element coefficients for neutrino neutrino annihilation into e±.
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The integral of each of these terms is6470 ∫ 2π

0

(s+ t(ψ)−m2
e)

2

4
dψ =

π

16
s(3s− 4m2

e) +
π

4
s3/2

√
s− 4m2

eyz (C.40)

− π

16
s(s− 4m2

e)(y
2 + z2) +

3π

16
s(s− 4m2

e)y
2z2 ,∫ 2π

0

(m2
e − t(ψ))2

4
dψ =

π

16
s(3s− 4m2

e)−
π

4
s3/2

√
s− 4m2

eyz

− π

16
s(s− 4m2

e)(y
2 + z2) +

3π

16
s(s− 4m2

e)y
2z2 ,∫ 2π

0

m2
e

s

2
dψ = πm2

es .

Therefore6471 ∫ 2π

0

S|M|2(s, t(ψ))dψ (C.41)

=
π

16
s[3s(A+B) + 4m2

e(4C −A−B)] +
π

4
s3/2

√
s− 4m2

e(A−B)yz

− π

16
s(s− 4m2

e)(A+B)(y2 + z2) +
3π

16
s(s− 4m2

e)(A+B)y2z2

≡πq(me, s, y, z)

and hence6472

Mνν̄→e+e− (C.42)

=
1

128(2π)5

∫ ∞
4m2

e

∫ ∞
0

√
1− 4m2

e/s

[∫ 1

−1

∫ 1

−1
q(s, y, z,me)G34(p

0,−(
√
1− 4m2

e/s)py)

×G12(p
0,−pz)dydz

]
p2

p0
dpds,

=
T 8

128(2π)5

∫ ∞
4m̃2

e

∫ ∞
0

√
1− 4m̃2

e/s̃

[∫ 1

−1

∫ 1

−1
q(s̃, y, z, m̃e)G̃34(p̃

0,−(
√
1− 4m̃2

e/s̃)p̃y)

× G̃12(p̃
0,−p̃z)dydz

]
p̃2

p̃0
dp̃ds̃ ,

where m̃e = me/T . If we want to emphasize the role of A,B,C then we write6473

Mνν̄→e+e−(A,B,C). Note that this expression is linear in (A,B,C) ∈ R3. Also note6474

that, under our assumptions that the distributions of e+ and e− are the same, the6475

Gij terms that contain the product of e± distributions are even functions. Hence the6476

term involving the integral of yz vanishes by antisymmetry.6477

Neutrino-electron(positron) scattering6478

Using Eq. (B.16), the matrix elements for neutrino e± scattering νe± → νe± can be6479

simplified to6480

S|M|2 = A

(
s−m2

e

2

)2

+B

(
s+ t−m2

e

2

)2

+ Cm2
e

t

2
(C.43)

where the coefficients A,B,C are given in table 13.6481
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Process A B C

νe + e− → νe + e− 128G2
F g

2
L 128G2

F g
2
R 128G2

F gLgR
νi + e− → νi + e−, i ∈ {µ, τ} 128G2

F g̃
2
L 128G2

F g
2
R 128G2

F g̃LgR
νe + e+ → νe + e+ 128G2

F g
2
R 128G2

F g
2
L 128G2

F gLgR
νi + e+ → νi + e+, i ∈ {µ, τ} 128G2

F g
2
R 128G2

F g̃
2
L 128G2

F g̃LgR

Table 13. Matrix element coefficients for neutrino e± scattering.

The integral of each of these terms is6482 ∫ 2π

0

(s−m2
e)

2

4
dψ = π

(s−m2
e)

2

2
, (C.44)∫ 2π

0

(s+ t(ψ)−m2
e)

2

4
dψ =

π

16s2
(s−m2

e)
2(3m4

e + 2m2
es+ 3s2)

+
π

4s2
(s−m2

e)
3(s+m2

e)yz −
π

16s2
(s−m2

e)
4(y2 + z2) +

3π

16s2
(s−m2

e)
4y2z2 ,∫ 2π

0

m2
e

t(ψ)

2
dψ = − π

2s
m2

e(s−m2
e)

2(1− yz) .

Therefore we have6483 ∫ 2π

0

S|M|2(s, t(ψ))dψ =π

[
A

2
+

B

16s2
(3m4

e + 2m2
es+ 3s2)− C

2s
m2

e

]
(s−m2

e)
2

+ π

[
B

4s2
(s−m2

e)(s+m2
e) +

C

2s
m2

e

]
(s−m2

e)
2yz

−B π

16s2
(s−m2

e)
4(y2 + z2) +B

3π

16s2
(s−m2

e)
4y2z2

≡πq(me, s, y, z) (C.45)

and6484

K(s, p) =
8π2rr′

s

∫ 1

−1

[∫ 1

−1
q(me, s, y, z)G34(p

0, (q′)0α− r′δy)dy
]
G12(p

0, q0α− rδz)dz ,

(C.46)

r = r′ =
s−m2

e√
s

, q0 = (q′)0 = −m
2
e√
s
, δ =

p√
s
, α =

p0√
s
.

This implies6485

Mνe→νe =
1

128(2π)5

∫ ∞
m2

e

∫ ∞
0

(1−m2
e/s)

2

(∫ 1

−1

∫ 1

−1
q(me, s, y, z)G34(p

0, (q′)0α− r′δy)

(C.47)

×G12(p
0, q0α− rδz)dydz

)
p2

p0
dpds .

As above, after scaling all masses by T , we obtain a prefactor of T 8. If we want6486

to emphasize the role of A,B,C then we write Mνe→νe(A,B,C). Note that this6487

expression is also linear in (A,B,C) ∈ R3.6488
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Total Collision Integral6489

We now give the total collision integrals for neutrinos. In the following, we indicate6490

which distributions are used in each of the four types of scattering integrals discussed6491

above by using the appropriate subscripts. For example, to compute Mνeν̄µ→νeν̄µ we6492

set G1,2 = ψ̂jf
1f2, G3,4 = f3f4, f1 = fνe , f3 = fνe , and f2 = f4 = fν̄µ in the6493

expression Eq. (C.39) for Mνν̄→νν̄ and then, to include the reverse direction of the6494

process, we must subtract the analogous expression whose only difference is G1,2 =6495

ψ̂jf1f2, G3,4 = f3f4. With this notation the collision integral for νe is6496

Mνe
=[Mνeνe→νeνe

+Mνeνµ→νeνµ
+Mνeντ→νeντ

] (C.48)

+ [Mνeν̄e→νeν̄e +Mνeν̄e→νµν̄µ +Mνeν̄e→ντ ν̄τ +Mνeν̄µ→νeν̄µ +Mνeν̄τ→νeν̄τ ]

+Mνeν̄e→e+e− + [Mνee−→νee− +Mνee+→νee+ ] .

Symmetry among the interactions implies that the distributions of νµ and ντ6497

are equal. We also neglect the small matter anti-matter asymmetry and so we take6498

the distribution of each particle to be equal to that of the corresponding antiparticle.6499

Therefore there are only three independent distributions, fνe
, fνµ

, and fe. This allows6500

us to combine several of the terms in Eq. (C.48) to obtain6501

Mνe =Mνeνe→νeνe(64G
2
F ) +Mνeνµ→νeνµ(2× 32G2

F ) +Mνeν̄e→νeν̄e(128G
2
F ) (C.49)

+Mνeν̄e→νµν̄µ(2× 32G2
F ) +Mνeν̄µ→νeν̄µ(2× 32G2

F )

+Mνeν̄e→e+e−(128G
2
F g

2
L, 128G

2
F g

2
R, 128G

2
F gLgR)

+Mνee→νee(128G
2
F (g

2
L + g2R), 128G

2
F (g

2
L + g2R), 256G

2
F gLgR) .

Introducing one more piece of notation, we use a subscript k to denote the orthog-6502

onal polynomial basis element that multiplies f1 or f1 in the inner product. The6503

inner product of the kth basis element with the total scattering operator for electron6504

neutrinos is therefore6505

Rk =2π2T−3Mk,νe
. (C.50)

Under these same assumptions and conventions, the total collision integral for the6506

combined νµ, ντ distribution (which we label νµ) is6507

Mνµ
=Mνµνµ→νµνµ

(64G2
F + 32G2

F ) +Mνµνe→νµνe
(32G2

F ) (C.51)

+Mνµν̄µ→νµν̄µ
(128G2

F + 32G2
F + 32G2

F )

+Mνµν̄µ→νeν̄e
(32G2

F ) +Mνµν̄e→νµν̄e
(32G2

F )

+Mνµν̄µ→e+e−(128G
2
F g̃

2
L, 128G

2
F g

2
R, 128G

2
F g̃LgR)

+Mνµe→νµe(128G
2
F (g̃

2
L + g2R), 128G

2
F (g̃

2
L + g2R), 256G

2
F g̃LgR) ,

Rk =2π2T−3Mk,νµ
. (C.52)

Neutrino Freeze-out Test6508

Now that we have the above expressions for the neutrino scattering integrals, we can6509

compare the chemical equilibrium and nonequilibrium methods on the problem of6510

neutrino freeze-out using the full 2-2 scattering kernels for neutrino processes. We6511

solve the Boltzmann-Einstein equation, Eq. (7.46), for both the electron neutrino dis-6512

tribution and the combined µ, τ neutrino distribution, including all of the processes6513

outlined above in the scattering operator, together with the Hubble equation for a(t),6514
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Eq. (1.5). The total energy density appearing in the Hubble equation consists of the6515

contributions from both independent neutrino distributions as well as chemical equi-6516

librium e± and photon distributions at some common temperature Tγ , all computed6517

using Eq. (1.47). The dynamics of Tγ are fixed by the divergence freedom condition of6518

the total stress energy tensor implied by Einstein’s equations. In addition, we include6519

the QED corrections to the e± and photon equations of state from Sec. 3.4.6520

To compare our results with Ref. [50], where neutrino freeze-out was simulated6521

using sin2(θW ) = 0.23 and η = η0, in table C.2 we present Nν together with the6522

following quantities6523

zfin = Tγa, ρν0 =
7

120
π2a−4, δρ̄ν =

ρν
ρν0
− 1. (C.53)

This quantities were introduced in Ref. [50], but some additional discussion of their6524

significance is in order. The normalization of the scale factor a is chosen so that at6525

the start of the computation Tγ = 1/a. This means that 1/a is the temperature of6526

a (hypothetical) particle species that is completely decoupled throughout the com-6527

putation. Here we will call it the free-streaming temperature. zfin is the ratio of6528

photon temperature to the free-streaming temperature. It is a measure of the amount6529

of reheating that photons underwent due to the annihilation of e±. For completely6530

decoupled neutrinos, whose temperature is the free-streaming temperature, the well6531

known value can be computed from conservation of entropy6532

zfin = (11/4)1/3 ≈ 1.401. (C.54)

For coupled neutrinos, one expects this value to be slightly reduced, due to the transfer6533

of some entropy from annihilating e± into neutrinos. This is reflected in Table C.2.6534

ρν0 is the energy density of a massless fermion with two degrees of freedom and6535

temperature equal to the free-streaming temperature. In other words, it is the energy6536

density of a single neutrino species, assuming it decoupled before reheating. Conse-6537

quently, δρ̄ν is the fractional increase in the energy density of a coupled neutrino6538

species, due to its participation in reheating.6539

We compute the above using both the chemical equilibrium and nonequilibrium6540

methods. For the following results, we used sin2(θW ) = 0.23 and η = η0. We see that

Method Modes zfin δρ̄νe δρ̄νµ,τ Nν

Chemical Eq 4 1.39785 0.009230 0.003792 3.044269
Chemical Non-Eq 2 1.39784 0.009269 0.003799 3.044383
Chemical Non-Eq 3 1.39785 0.009230 0.003791 3.044264

6541

∆Nν ≡ Nν − 3 agrees to 2 digits and 4 digits when using 2 and 3 modes respec-6542

tively for the chemical nonequilibrium method, and similar behavior holds for the6543

other quantities. Due to the reduction in the required number of modes, the chemi-6544

cal nonequilibrium method with the minimum number of required modes (2 modes)6545

is more than 20× faster than the chemical equilibrium method with its minimum6546

number of required modes (4 modes), a very significant speed-up when the minimum6547

number of modes meets the required precision. The value of Nν we obtain agrees with6548

that found by [50], up to their cited error tolerance of ±0.002.6549

Conservation Laws and Scattering Integrals6550

For some processes, various of the Rk’s vanish exactly, as we now show. First consider6551
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processes in which f1 = f3 and f2 = f4, such as in kinetic scattering processes. Since6552

m1 = m3 and m2 = m4 we have r = r′, q0 = (q′)0. The scattering terms are all two6553

dimensional integrals of some function of s and p multiplied by the quantity6554

Ik ≡
∫ 1

−1

[∫ 1

−1

∫ 2π

0

S|M|2(s, t(cos(ψ)
√

1− y2
√
1− z2 + yz))dψf1(h1(y))f2(h2(y))dy

]
(C.55)

× f1k (h1(z))f2(h2(z))dz

−
∫ 1

−1

[∫ 1

−1

∫ 2π

0

S|M|2(s, t(cos(ψ)
√
1− y2

√
1− z2 + yz))dψf1(h1(y))f

2(h2(y))dy

]
× f1,k(h1(z))f2(h2(z))dz

h1(y) = (p0 + (q′)0α− r′δy)/2 , h2(y) = (p0 − q0α+ rδy)/2 ,

f1,k = ψ̂kf1 , f
1
k = ψ̂kf

1 .

Note that for k = 0, ψ̂0 is constant. After factoring it out of Ik, the result is clearly6555

zero and so R0 = 0.6556

We further specialize to a distribution scattering from itself i.e. f1 = f2 = f3 = f4.6557

Since m1 = m2 and m3 = m4 we have q0 = (q′)0 = 0 and6558

h1(y) = (p0 − r′δy)/2, h2(y) = (p0 + rδy)/2 . (C.56)

By the above, we know that R0 = 0. ψ̂1 appears in I1 in the form ψ̂1(h1(z)), a degree6559

one polynomial in z. Therefore R1 is a sum of two terms, one which comes from the6560

degree zero part and one from the degree one part. The former is zero, again by the6561

above reasoning. Therefore, to show that R1 = 0 we need only show I1 = 0, except6562

with ψ̂1(h1(z)) replaced by z. Since h1(−y) = h2(y), changing variables y → −y and6563

z → −z in the following shows that this term is equal to its own negative, and hence6564

is zero6565 ∫ 1

−1

[∫ 1

−1

∫ 2π

0

S|M|2(s, t(cos(ψ)
√

1− y2
√
1− z2 + yz))dψf1(h1(y))f1(h2(y))dy

]
× zf1(h1(z))f1(h2(z))dz (C.57)

−
∫ 1

−1

[∫ 1

−1

∫ 2π

0

S|M|2(s, t(cos(ψ)
√

1− y2
√

1− z2 + yz))dψf1(h1(y))f
1(h2(y))dy

]
× zf1(h1(z))f1(h2(z))dz .

We note that the corresponding scattering integrals do not vanish for the chemical6566

equilibrium spectral method. This is another advantage of the method developed in6567

Appendix B and leads to a further reduction in cost of the method, beyond just the6568

reduction in minimum number of modes.6569

Finally, we point out how the vanishing of these inner products is a reflection of6570

certain conservation laws. From Eq. (B.18), Eq. (C.1), and the fact that ψ̂0, ψ̂1 span6571

the space of polynomials of degree ≤ 1, we have the following expressions for the6572

change in number density and energy density of a massless particle6573

1

a3
d

dt
(a3n) =

gp
2π2

∫
1

E
C[f ]p2dp = c0R0 , (C.58)

1

a4
d

dt
(a4ρ) =

gp
2π2

∫
C[f ]p2dp = d0R0 + d1R1 ,
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for some c0, d0, d1. Therefore, the vanishing of R0 is equivalent to conservation of6574

comoving particle number. The vanishing of R0 and R1 implies ρ ∝ 1/a4 i.e. that6575

the reduction in energy density is due entirely to redshift; energy is not lost from the6576

distribution due to scattering. These findings match the situations above where we6577

found one or both of R0 = 0, R1 = 0. R0 vanished for all kinetic scattering processes6578

and we know that all such processes conserve comoving particle number. Both R06579

and R1 vanished for a distribution scattering from itself and in such a process there is6580

no energy loss energy from the distribution by scattering; energy is only redistributed6581

among the particles corresponding to that distribution.6582

C.3 Comparison with an alternative Method for Computing Scattering Integrals6583

As a comparison and consistency check for our method of computing the scattering6584

integrals, in this appendix we analytically reduce the collision integral down to 36585

dimensions by a method adapted from [310,311]. The only difference between our6586

treatment in this section and theirs being that they solved the Boltzmann equation6587

numerically on a grid in momentum space and not via a spectral method. Therefore6588

we must take an inner product of the collision operator with a basis function and6589

hence we are integrating over all particle momenta, whereas they integrate over all6590

momenta except that of particle one. For completeness we give a detailed discussion6591

of their method.6592

Writing the conservation of four-momentum enforcing delta function6593

δ(∆p) =
1

(2π)3
δ(∆E)eiz⃗·∆p⃗d3z , (C.59)

where the arrow denoted the spatial component, we can simplify the collision integral6594

as follows6595

R ≡
∫
G(E1, E2, E3, E4)S|M|2(s, t)(2π)4δ(∆p)

4∏
i=1

d3pi
2(2π)3Ei

(C.60)

=
1

16(2π)11

∫
G(Ei)S|M|2(s, t)δ(∆E)eiz⃗·∆p

4∏
i=1

d3pi
Ei

d3z

=
2

(2π)6

∫
G(Ei)K(Ei)δ(∆E)

4∏
i=1

pi
Ei
dpiz

2dz ,

K ≡p1p2p3p4
(4π)5

∫
S|M|2(s, t)eiz⃗·∆p⃗

4∏
i=1

dΩidΩz . (C.61)

We can change variables from pi to Ei in the outer integrals and use the delta function6596

to eliminate the integration over E4 to obtain6597

R =
2

(2π)6

∫
1E1+E2−E3>m4

G(Ei)

[∫ ∞
0

K(z, Ei)z
2dz

]
dE1dE2dE3 , (C.62)

pi =
√
E2

i −m2
i , E4 = E1 + E2 − E3 .

From Tables 8 and 9 we see that the matrix elements for weak scattering involving6598

neutrinos are linear combinations of the terms6599

p1 · p2, p1 · p3, (p1 · p4)(p2 · p3), (p1 · p2)(p3 · p4), (p1 · p3)(p2 · p4). (C.63)
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Therefore we must compute the angular integral term K with S|M|2 replaced by6600

elements from the following list6601

1, p⃗1 · p⃗2, p⃗1 · p⃗3, p⃗1 · p⃗4 , p⃗2 · p⃗3, p⃗2 · p⃗4 , p⃗3 · p⃗4 , (C.64)

(p⃗1 · p⃗2)(p⃗3 · p⃗4), (p⃗1 · p⃗4)(p⃗2 · p⃗3), (p⃗1 · p⃗3)(p⃗2 · p⃗4) ,

producing K0, K12, K13,...,K1324. All of these are rotationally invariant, and so we6602

can always rotate coordinates so that z⃗ = zẑ. This allows us to evaluate the z angular6603

integral6604

K =
p1p2p3p4
(4π)4

∫
S|M|2(s, t)eizẑ·∆p⃗

4∏
i=1

dΩi . (C.65)

The remaining angular integrals are straightforward to evaluate analytically for6605

each expression in Eq. (C.64)6606

K0 =

4∏
i=1

sin(piz)

z
, (C.66)

K12 = − (sin(p1z)− p1z cos(p1z))(sin(p2z)− p2z cos(p2z)) sin(p3z) sin(p4z)
z6

,

K13 =
(sin(p1z)− p1z cos(p1z)) sin(p2z)(sin(p3z)− p3z cos(p3z)) sin(p4z)

z6
,

K14 =
(sin(p1z)− p1z cos(p1z)) sin(p2z) sin(p3z)(sin(p4z)− p4z cos(p4z))

z6
,

K23 =
sin(p1z)(sin(p2z)− p2z cos(p2z))(sin(p3z)− p3z cos(p3z)) sin(p4z)

z6
,

K24 =
sin(p1z)(sin(p2z)− p2z cos(p2z)) sin(p3z)(sin(p4z)− p4z cos(p4z))

z6
,

K34 = − sin(p1z) sin(p2z)(sin(p3z)− p3z cos(p3z))(sin(p4z)− p4z cos(p4z))
z6

,

K1234 = K1423 = K1324 =

4∏
i=1

(sin(piz)− piz cos(piz))
z2

.

To compute
∫∞
0
K(z)z2dz we need to evaluate the following three integrals6607

D1 =

∫ ∞
0

sin(p1z) sin(p2z) sin(p3z) sin(p4z)

z2
dz , (C.67)

D2 =

∫ ∞
0

sin(p1z) sin(p2z)(sin(p3z)− p3z cos(p3z))(sin(p4z)− p4z cos(p4z))
z4

dz ,

D3 =

∫ ∞
0

∏4
i=1(sin(piz)− piz cos(piz))

z6
dz .

These expressions are symmetric under 1 ↔ 2 and 3 ↔ 4 and so without loss of6608

generality we can assume p1 ≥ p2, p3 ≥ p4. We require p1 ≤ p2 + p3 + p4 (and cyclic6609

permutations) by conservation of energy. In the case where the above conditions all6610

hold, we separate the computation into four additional cases in which the integrals6611

can be evaluated analytically, as in [310,311]:6612
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p1 + p2 > p3 + p4, p1 + p4 > p2 + p3:6613

D1 =
π

8
(p2 + p3 + p4 − p1) , (C.68)

D2 =
π

48
((p1 − p2)3 + 2(p33 + p34)− 3(p1 − p2)(p23 + p24) ,

D3 =
π

240
(p51 − p52 + 5p32(p

2
3 + p24)− 5p31(p

2
2 + p23 + p24)− (p3 + p4)

3(p23 − 3p3p4 + p24)

+ 5p22(p
3
3 + p34) + 5p21(p

3
2 + p33 + p34)) .

p1 + p2 < p3 + p4, p1 + p4 > p2 + p3:6614

D1 =
π

4
p2 , (C.69)

D2 =
π

24
p2(3(p

2
3 + p24 − p21)− p22) ,

D3 =
π

120
p32(5(p

2
1 + p23 + p24)− p22) .

p1 + p2 > p3 + p4, p1 + p4 < p2 + p3:6615

D1 =
π

4
p4 , (C.70)

D2 =
π

12
p34 ,

D3 =
π

120
p34(5(p

2
1 + p22 + p23)− p24) .

p1 + p2 < p3 + p4, p1 + p4 < p2 + p3:6616

D1 =
π

8
(p1 + p2 + p4 − p3) , (C.71)

D2 =
π

48
(−(p1 + p2)

3 − 2p33 + 2p34 + 3(p1 + p2)(p
2
3 + p24)) ,

D3 =
π

240
(p53 − p54 − (p1 + p2)

3(p21 − 3p1p2 + p22) + 5(p31 + p32)p
2
3 − 5(p21 + p22)p

3
3

+ 5(p31 + p32 − p33)p24 + 5(p21 + p22 + p23)p
3
4) .

We computed the remaining integrals numerically in several test cases for each of6617

the reaction types in section C.2 and obtained agreement between this method and6618

ours, up to the integration tolerance used. However, the method we have developed6619

in this Appendix has the distinct advantage of resulting in smooth integrand. The6620

expressions obtained here are only piecewise smooth and therefore much costlier to6621

integrate numerically. Since the cost of numerically solving the Boltzmann equation is6622

dominated by the cost of computing the collision integrals, we find that our approach6623

constitutes a significant optimization in practice.6624
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(bottom) for the three types of processes, see insert, as functions of6645

interaction strength η > η0. Published in Ref. [19] under the CC BY6646

4.0 license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326647

7 Freeze-out temperatures for electron neutrinos (top) and µ, τ neutrinos6648

(bottom) for three types of processes, see insert, as functions of the6649

value of the Weinberg angle sin2(θW ). Vertical line is at present epoch6650

sin2(θW ) = 0.23. Published in Ref. [19] under the CC BY 4.0 license . 336651

8 The first hours in the lifespan of the Universe from the end of baryon6652

antimatter annihilation through BBN: Deceleration parameter q (blue6653

line, right hand scale) shows impact of emerging antimatter compo-6654

nents; at millisecond scale anti-baryonic matter and at 35 sec. scale6655

positronic nonrelativistic matter appears. The left hand scale shows6656

photon γ temperature T in eV, dashed is the emerging lower value for6657

neutrino ν which are not reheated by e+e− annihilation. Vertical lines6658

bracket the BBN domain. Published in Ref. [19] under the CC BY 4.06659

license. Adapted from Ref. [23] . . . . . . . . . . . . . . . . . . . . . . 346660

9 First hours in the evolution of the Universe: Hubble parameter H in6661

units [1/s] (left hand scale) and the redshift 1 + z (right hand scale,6662

blue) spanning the epoch from well below the end of baryon antimatter6663

annihilation through BBN, compare Fig. 8. Adapted from Ref. [23].6664

Published in Ref. [19] under the CC BY 4.0 license . . . . . . . . . . . 366665

10 Universe inflation due to the disappearance of degrees of freedom as6666

a function of time t [ms] (milliseconds). The Universe volume inflated6667

by approximately a factor of 27 above the naive thermal redshift scale6668

as massive particles disappeared successively from the inventory while6669

entropy remained conserved. Adapted from Ref. [2] . . . . . . . . . . . 376670

11 The ratio between Higgs density nH and baryon asymmetry density6671

nB − nB̄ as a function of temperature T assuming chemical Higgs6672

equilibrium ΥH = 1 and present day entropy per baryon. Both densities6673

are equal (horizontal line) at the temperature T = 5.7GeV. Adapted6674

from Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426675

12 The equilibrium charm and bottom quark number density normalized6676

by entropy density, as a function of temperature in the primordial6677

Universe, see text for discussion of different mass values. Adapted from6678

Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466679
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13 Comparison of Hubble time 1/H, quark lifespan τq, and characteristic6680

time for production via quark, gluon pair fusion. The upper frame for6681

charm c-quark in the entire QGP epoch T rang; the lower frame for6682

bottom b-quark amplifying the dynamic detail balance T ≃ 200MeV.6683

Both figures end at the hadronization temperature of TH ≈ 150MeV.6684

See text for additional information. Published in Ref. [1] under the CC6685

BY 4.0 license. Adapted from Ref. [5] . . . . . . . . . . . . . . . . . . 486686

14 Characteristic production, decay, times of bottom quark as a function6687

of temperature T for 0.3GeV > T > 0.15MeV. Near the top of figure6688

1/H (brown solid line) and τT (brown dashed line); other horizontal6689

lines are bottom-quark (in QGP) weak interaction lifetimes τb for the6690

three different masses: mb = 4.2GeV (blue dotted line), mb = 4.7GeV6691

(black solid line), mb = 5.2GeV (red dashed line), and the vacuum6692

lifespan τB of the Bc meson (green solid line). The relaxation time for6693

strong interaction bottom production g+g, q+ q̄ → b+ b̄ is shown with6694

three different bottom masses and same type-color coding as weak6695

interaction decay rate. At bottom of figure the in plasma formation6696

process (dashed lines, purple) b+ c→ Bc + g with cross section range6697

σ = 0.1, 10mb. Adapted from Ref. [5] . . . . . . . . . . . . . . . . . . . 516698

15 Dynamical fugacity of bottom quark as a function of temperature in6699

primordial Universe. Solid line shows bottom quark bound into Bc,6700

dashed lines the case of free bottom quark: mb = 4.2GeV (blue), mb =6701

4.7GeV (black), and mb = 5.2GeV (red). Published in Ref. [1] under6702

the CC BY 4.0 license. Adapted from Ref. [5] . . . . . . . . . . . . . . 536703

16 The effective relaxation time τeff as a function of temperature in the6704

primordial Universe for bottom mass mb = 4.7GeV. For comparison,6705

we also plot the vacuum lifespan of Bc meson τdecayBc
(red dashed-line),6706

the relaxation time for bottom production τ bsource (blue dashed-line),6707

Hubble expansion time 1/H(brown solid line) and relaxation time for6708

temperature cooling τT (brown dashed-line). Adapted from Ref. [5] . . 546709

17 The non-stationary fugacity Υ non
st as a function of temperature in the6710

Universe for different bottom massmb = 4.2GeV (blue),mb = 4.7GeV6711

(black), andmb = 5.2GeV (red) for the case bottom quarks bound into6712

Bc mesons. Adapted from Ref. [5] . . . . . . . . . . . . . . . . . . . . . 556713

18 The chemical potential of baryon number µB/T and strangeness µs/T6714

as a function of temperature 150MeV > T > 10MeV in the primordial6715

Universe; for comparison we show mN/T with mN = 938.92MeV, the6716

average nucleon mass. Published in Ref. [10] under the CC BY 4.06717

license. Adapted from Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . 596718

19 The antibaryon nB (red solid line) number density as a function of6719

temperature in the range 150MeV > T > 5MeV. The blue solid line for6720

baryons nB merges into the antibaryon yield so that net baryon number6721

nB−nrB (dashed blue line) continues the net baryon yield seen as solid6722

blue line. At temperature T = 38.2MeV we have nB/(nB − nB) = 1,6723

antibaryons disappear from the Universe. Published in Ref. [1] under6724

the CC BY 4.0 license. Adapted from Ref. [5] . . . . . . . . . . . . . . 606725

20 Ratios of hadronic particle number densities with baryon B yields as6726

a function of temperature 150MeV > T > 10MeV: Pions π (brown6727

line), kaons K(qs̄) (blue), antibaryon B (black), hyperon Y (red) and6728

anti-hyperons Y (dashed red). Also shown K/Y (purple). Published in6729

Ref. [1] under the CC BY 4.0 license. Adapted from Ref. [10] . . . . . 616730
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21 The strangeness abundance changing reactions in the primordial Uni-6731

verse. The red circles show strangeness carrying hadronic particles; red6732

thick lines denote effectively instantaneous reactions. Black thick lines6733

show relatively strong hadronic reactions. The reaction rates required6734

to describe strangeness time evolution are presented in Ref. [13]. Pub-6735

lished in Ref. [1] under the CC BY 4.0 license. Adapted from Ref. [5,6736

10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626737

22 Hadronic relaxation reaction times, see Eq. (2.68), as a function of tem-6738

perature T , are compared to Hubble time 1/H (black solid line). At6739

bottom the horizontal black-dashed line is the natural (vacuum) lifes-6740

pan of ρ. Published in Ref. [1] under the CC BY 4.0 license. Adapted6741

from Ref. [5,10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656742

23 Thermal reaction rate R per volume and time for important hadronic6743

strangeness production and exchange processes as a function of tem-6744

perature 150MeV > T > 10MeV in the primordial Universe. Published6745

in Ref. [1] under the CC BY 4.0 license. Adapted from Ref. [5,10] . . 686746

24 Dependence of effective number of neutrinos (top) and neutrino fugac-6747

ity (bottom) on the neutrino kinetic freeze-out temperature. We also6748

show the evolution of the deceleration parameter through the freeze-6749

out period (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906750

25 Left axis: Effective number of entropy-DoF, including lattice QCD ef-6751

fects applying [69] (solid line) and [123] (circles), compared to the ear-6752

lier results [124] (triangles) used by [121], and the ideal gas model6753

of [125] (dashed line) as function of temperature T . Right axis: Photon6754

to SP temperature ratio, Tγ/Ts, as a function of SP decoupling temper-6755

ature (dash-dotted (blue) line). The vertical dotted lines at T = 1426756

and 163 MeV delimit the QGP transformation region. Published in6757

Ref. [20] under the CC BY 4.0 license . . . . . . . . . . . . . . . . . . 926758

26 Solid lines: Increase in δNeff due to the effect of 1, . . . , 6 light sterile6759

boson DoF (gs = 1, . . . , 6, bottom to top curves) as a function of6760

freeze-out temperature Td,s. Dashed lines: Increase in δNeff due to the6761

effect of 1, . . . , 6 light sterile fermion DoF (gs = 7/8 × 1, . . . , 7/8 × 6,6762

bottom to top curves) as a function of freeze-out temperature Td,s. The6763

horizontal dotted lines correspond to δNeff +0.046 = 0.36, 0.62, 1. The6764

vertical dotted lines show the reported range of QGP transformation6765

temperatures Tc = 142−163MeV. Published in Ref. [20] under the CC6766

BY 4.0 license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936767

27 Comparison of Hubble parameter to neutrino scattering length for var-6768

ious types of PP-SM processes, top for electron neutrino νe and bottom6769

for the other two flavors νµ, ντ . Published in Ref. [19] under the CC6770

BY 4.0 license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956771

28 Starting at 12MeV, this figure shows the relaxation of a nonequilib-6772

rium µ, τ -neutrino distribution towards equilibrium. The fugacities are6773

shown in the top frame while the temperatures are shown in the bottom6774

frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976775

29 Change in effective number of neutrinos N eff
ν as a function of Weinberg6776

angle for several values of η/η0 = 1, 2, 5, 10. Vertical line is sin2(θW ) =6777

0.23. Adapted from Ref. [19] . . . . . . . . . . . . . . . . . . . . . . . . 1006778

30 N eff
ν bounds in the η/η0, sin

2(θW ) plane. Blue for N eff
ν ∈ (3.03, 3.57)6779

corresponding to Ref. [62] CMB+BAO analysis and green extends the6780

region to N eff
ν < 3.87 i.e. to CMB+H0. Dot-dashed line delimits the6781

1 standard-deviation lower boundary of the second analysis. Adapted6782

from Ref. [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016783
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31 The free-streaming neutrino chemical potential |µν |/Tf as a function6784

of the effective number of neutrinos N eff
ν . The solid (blue) line is the6785

exact solution and the (red) dashed line is the approximate solution6786

neglecting the (µν/Tf )
4 term; the maximum difference in the domain6787

shown is about 2%. Adapted from Ref. [5] . . . . . . . . . . . . . . . . 1056788

32 The ratio B/|L| between the net baryon number and the net lepton6789

number as a function of N eff
ν : The solid blue line shows B/|L|. The6790

vertical (red) dotted lines represent the values 3.36 ⩽ N eff
ν ⩽ 3.62,6791

which correspond to 1.16 × 10−9 ⩽ B/|L| ⩽ 1.51 × 10−9 (horizontal6792

dashed lines). Adapted from Ref. [5] . . . . . . . . . . . . . . . . . . . 1076793

33 The thermal reaction rate per volume as a function of temperature6794

2MeV > T > 0.05MeV. The dominant reaction for the process γγ →6795

e−e+ → νν̄ is the ee → νν and we have Rγ→e→ν = Ree→νν . Adapted6796

from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096797

34 The temperature ratio Tν/Tγ,e± (blue line), the rate ratioRνν→ee/Ree→νν6798

(red line) and (Ree→νν − Rνν→ee)/Ree→νν (green line) as a function6799

of temperature. It shows that the reaction νν → ee is small compare6800

to the reaction ee → νν as temperature cooling down. Adapted from6801

Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106802

35 the ratio between nextra/nrelic as a function of temperature with dif-6803

ferent neutrino freeze-out temperature Tf . It shows that the higher6804

freeze-out temperature Tf the higher number of extra neutrinos can6805

be produced. Adapted from Ref. [5]. . . . . . . . . . . . . . . . . . . . 1116806

36 Normalized neutrino FDEV velocity distribution in the Earth frame.6807

We show the distribution for N eff
ν = 3.046 (solid lines) and N eff

ν = 3.626808

(dashed lines). Published in Ref. [22] under the CC BY 4.0 license . . 1136809

37 Neutrino FDEV energy distribution in the Earth frame. We show the6810

distribution for Nν = 3.046 (solid lines) and Nν = 3.62 (dashed lines).6811

Published in Ref. [22] under the CC BY 4.0 license . . . . . . . . . . . 1146812

38 Neutrino flux density in the Earth frame. We show the result for6813

N eff
ν = 3.046 (solid lines) and N eff

ν = 3.62 (dashed lines) for an ob-6814

server moving with v⊕ = 300 km/s. Published in Ref. [22] under the6815

CC BY 4.0 license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156816

39 Neutrino FDEV de Broglie wavelength distribution in the Earth frame.6817

We show in left panel the distribution for N eff
ν = 3.046 (solid lines) and6818

N eff
ν = 3.62 (dashed lines) and in right panel their ratio. Published in6819

Ref. [22] under the CC BY 4.0 license. . . . . . . . . . . . . . . . . . 1156820

40 The thermal reaction rate per unit time and units volume for different6821

reactions as a function of temperature. The dominant reactions for6822

µ± production are γ + γ → µ+ + µ− and e+ + e− → µ+ + µ−, and6823

the total production rate crosses the decay rate of µ± at temperature6824

Tdissapear ≈ 4.195MeV. Published in Ref. [1] under the CC BY 4.06825

license. Adapted from Ref. [5,12] . . . . . . . . . . . . . . . . . . . . . 1236826

41 The density ratio between µ± and baryons as a function of tempera-6827

ture. The density ratio at muon disappearance temperature is about6828

nµ±/nB(Tdisappear) ≈ 0.911, and around the temperature T ≈ 4.212MeV6829

the density ratio nµ±/nB ≈ 1. Published in Ref. [1] under the CC BY6830

4.0 license. Adapted from Ref. [5,12] . . . . . . . . . . . . . . . . . . . 1246831
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42 Left axis: The chemical potential of electrons as a function of temper-6832

ature (brown line). Right axis: the ratio of electron (positron) number6833

density to baryon density as a function of temperature. The solid blue6834

line is the electron density, the red line is the positron density, and the6835

green dashed line is obtained setting for comparison µe = 0. The verti-6836

cal black dotted lines are bounds of BBN epoch. Published in Ref. [8]6837

under the CC BY 4.0 license. Adapted from Ref. [5] . . . . . . . . . . 1266838

43 The relaxation rate κ (black line) as a function of temperature in the6839

nonrelativistic electron-positron plasma, compared to reaction rates for6840

Møller reaction e−+e− → e−+e− (blue dashed line), Bhabha reaction6841

e− + e+ → e− + e+ (red dashed line), and inverse Compton scattering6842

e− + γ → e− + γ (green dashed line) respectively. The Debye mass6843

mD = ωp

√
me/T (purple line) is also shown. Published in Ref. [8]6844

under the CC BY 4.0 license. Adapted from Ref. [5] . . . . . . . . . . 1286845

44 The relaxation rate κ/2 (blue line) and plasma frequency ωpl (red6846

line) as a function of temperature in nonrelativistic electron-positron6847

plasma. Vertical green dashed line indicates the boundary between6848

over- and under-damped plasma at T < 145.5 keV which is before the6849

BBN epoch (vertical black lines). Temperature domain of validity is6850

above disappearance of positrons (vertical line at 20.3 keV). Adapted6851

from Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306852

45 The relaxation rate κ that satisfies Eq. (4.45) self-consistently as a6853

function of temperature 50 ⩽ T ⩽ 86 keV. The minor fluctuations are6854

due to limited numerical precision. Adapted from Ref. [5] . . . . . . . 1326855

46 The average distance between baryons n
−1/3
B and the Debye length6856

λD (µe ̸= 0) as a function of temperature (red solid line). During the6857

BBN epoch (vertical dotted lines) n
−1/3
B > λD. For temperature below6858

T < 32.76 keV we have n
−1/3
B < λD. For comparison, the Debye length6859

for zero chemical potential µe = 0 is also plotted as a blue dashed line.6860

Published in Ref. [8] under the CC BY 4.0 license . . . . . . . . . . . 1356861

47 Plot of the total screening potential scaled with charge Z and distance6862

along the direction of motion. We show a comparison of the following6863

screening models plotted along the direction of motion of a nucleus6864

r · β̂N: static screening (black), dynamic screening (red dotted) from6865

[175], damped-dynamic screening (blue dashed), and the approximate6866

analytic solution of Eq. (4.71) (orange dashed). A black arrow indicates6867

the direction of motion of the nucleus β̂N. Published in Ref. [8] under6868

the CC BY 4.0 license . . . . . . . . . . . . . . . . . . . . . . . . . . . 1386869

48 Two dimensional plot of the total potential Eq. (4.71) scaled with Z,6870

at T = 74 keV. The potential is cylindrically symmetric about the di-6871

rection of motion ẑ, which is indicated by a black arrow. The direction6872

transverse to the motion is ρ. The sign of the damped-dynamic cor-6873

rection Eq. (4.72) changes sign due to the cosine term. Adapted from6874

Ref. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1396875

49 The neutron lifetime τMedium
n in the cosmic plasma as a function of6876

temperature. At high temperature T = 100MeV the neutron lifetime6877

is 3495 sec which is 3.974 times larger than the lifetime in vacuum.6878

At low temperature, T < me, the neutron lifetime depends also on the6879

neutrino temperature, Tν , the effect is amplified in the insert Published6880

in Ref. [16] under the CC BY 4.0 license . . . . . . . . . . . . . . . . 1446881
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50 The neutron abundance ratio as a function of temperature. Considering6882

the neutron freeze-out temperature Tf = 0.08MeV and the BBN tem-6883

perature TBBN ≈ 0.07MeV, we find the abundance ratioXMeduim
n /Xvacuum

n =6884

1.064 at temperature TBBN . Published in Ref. [16] under the CC BY6885

4.0 license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456886

51 Vector potential is projected onto k̂ = x̂3 = ẑ. Adapted from Ref. [3]. 1566887

52 The vacuum magnetic field for two colliding lead Pb nuclei is shown6888

for impact parameter b = 3R and γ = 37. (At larger Lorentz factors,6889

a graphical representation is difficult to visualize without scaling the6890

fields with γ). The vector potential is plotted in the collision plane, and6891

red arrows indicate the direction of the moving nuclei. This plot mainly6892

shows the magnetic field distribution, which is Lorentz contracted along6893

the direction of motion. The magnetic field lines circulate out of the6894

collision plane perpendicular to the velocity, adding together at the6895

collision center. Adapted from Ref. [3]. . . . . . . . . . . . . . . . . . . 1636896

53 Plot of the electromagnetic Debye mass and the QCD dampening rate6897

κ as a function of temperature. At temperature T = 300MeV used6898

here, κ = 4.86mD. Published in Ref. [9] under the CC BY 4.0 license 1666899

54 The black line shows the static conductivity σ0 as a function of tem-6900

perature predicted by Eq. (5.97), which is compared to lattice results6901

adapted from [248] for T > Tc. The factor of Cem, defined in Eq. (6.7),6902

normalizes the conductivity by the charge of the plasma constituents,6903

such that results using different numbers of dynamical quark flavors6904

can be compared. We indicate each set of points by its arXiv reference:6905

blue diamonds [249,250], green circles [251], and red triangles [252].6906

Adapted from Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1676907

55 The magnetic field at the collision center as a function of time, with6908

T = 300MeV for Au-Au collisions (Z = 79) at
√
sNN = 200GeV6909

and impact parameter b = 6.4 fm. The left panel shows the magnetic6910

field on a semi-logarithmic scale up to ct = 5 fm. The right panel6911

shows the early-time magnetic field on a linear scale. At the chosen6912

temperature, the electromagnetic Debye mass is mD = 74MeV, and6913

the quark damping rate is κ = 4.86mD. This gives a static conductivity6914

of σ0 = 5.01MeV. Comparing the different approximations, we see they6915

all have similar asymptotic behavior. Only the Drude conductivity, the6916

light-cone limit of the conductivity, and the full conductivity σ⊥(ω,k)6917

describe the field at early times. Note that the plasma is considered6918

homogeneous and stationary here. In a more realistic situation, the field6919

would become screened only after the QGP is formed in the collision.6920

Published in Ref. [9] under the CC BY 4.0 license . . . . . . . . . . . 1686921

56 Plot of the freeze-out magnetic field for T = 150MeV. We expect6922

that around this temperature QGP will hadronize into a mixed phase6923

[254]. The approximate late time solution Eq. (6.16) shown as an or-6924

ange dashed line is compared to numerical calculations using the full6925

polarization tensor Eq. (6.10) and to the late time analytic expansion6926

Eq. (6.17). The approximate solution does not fully match the ultra-6927

relativistic limit until times t > tσ ≈ 59 fm/c. The magnetic field is6928

independent of the beam energy over a wide range of γ but begins6929

to diverge slowly from the ultrarelativistic case at around γ ≤ 15 for6930

the time window shown in the figure. Lower beam energies result in a6931

somewhat larger field at late times. Adapted from Ref. [9] . . . . . . . 1706932
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57 Plots comparing the electric field in vacuum, shown as a black dashed6933

line, to the electric field in QGP shown as the red points. The left6934

plot shows the transverse electric field screened by the plasma. The6935

plot on the right shows the electric field in the direction of motion6936

enhanced by the plasma. We choose T = 300MeV and Z = 79, for6937

Au-AU collisions at
√
s = 200GeV at an impact parameter of half6938

nuclear overlap b = 1R = 6.4 fm. The vertical line in the left plot6939

indicates y = R, approximately the transverse size of QGP. Adapted6940

from Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1726941

58 The external (black), induced (red dashed), and total charge density6942

(blue dashed) for a single nucleus traveling in the +ẑ direction at γ =6943

1.2 on the left and γ = 5 on the right. The induced charge distribution6944

trails behind the nuclei. The external charge density increases with γ.6945

The induced charge distribution trails behind the nuclei more for larger6946

γ . Adapted from Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 1736947

59 2D plot of the wake field of a single traveling gold nucleus γ = 5 in6948

QGP. The blue arrow indicates the direction of motion and the grey6949

disk represents the Lorentz contracted nucleus. Lines of constant charge6950

density are shown as contours. Adapted from Ref. [3]. . . . . . . . . . . 1746951

60 Qualitative plot of the primordial magnetic field strength over cosmic6952

time. All figures are printed in temporal sequence in the expanding6953

universe beginning with high temperatures (and early times) on the6954

left and lower temperatures (and later times) on the right. Published6955

in Ref. [4] under the CC BY 4.0 license. Adapted from Ref. [1] . . . . 1766956

61 Number density of electron e− and positron e+ to baryon ratio ne±/nB6957

as a function of photon temperature in the universe. See Sec. 4.2 for6958

further details. In this work we measure temperature in units of energy6959
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scale b0. Published in Ref. [4] under the CC BY 4.0 license. Adapted6968
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plotted as a function of temperature. Published in Ref. [4] under the6971

CC BY 4.0 license. Adapted from Ref. [1,7] . . . . . . . . . . . . . . . 1906972

65 The magnetization M as a function of g-factor plotted for several tem-6973
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ξ = 1. Published in Ref. [4] under the CC BY 4.0 license. Adapted6975
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Υ = 0.5. Adapted from Ref. [21]. . . . . . . . . . . . . . . . . . . . . . 2246986
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Basel, 2002), pp. 31–63. doi:10.1007/978-3-0348-8165-4 27575

218. R. Hakim, Introduction to Relativistic Statistical Mechanics (World Scientific, 2011).7576

doi:10.1142/78817577

219. M.E. Carrington, T. Fugleberg, D. Pickering, M.H. Thoma, Dielectric functions and7578

dispersion relations of ultrarelativistic plasmas with collisions. Can. J. Phys. 82, 671–7579

678 (2004). doi:10.1139/p04-035. arXiv:hep-ph/03121037580

220. B. Schenke, M. Strickland, C. Greiner, M.H. Thoma, A Model of the effect7581

of collisions on QCD plasma instabilities. Phys. Rev. D 73, 125004 (2006).7582

doi:10.1103/PhysRevD.73.125004. arXiv:hep-ph/06030297583

221. D. Satow, Nonlinear electromagnetic response in quark-gluon plasma. Phys. Rev. D7584

90(3), 034018 (2014). doi:10.1103/PhysRevD.90.034018. arXiv:1406.7032 [hep-ph]7585

222. P.L. Bhatnagar, E.P. Gross, M. Krook, A Model for Collision Processes in Gases. 1.7586

Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys.7587

Rev. 94, 511–525 (1954). doi:10.1103/PhysRev.94.5117588

https://doi.org/10.1016/0375-9474(82)90051-3
https://doi.org/10.1103/PhysRevD.26.1394
https://doi.org/10.1016/0370-2693(87)90718-0
https://doi.org/10.1103/PhysRevD.39.1940
https://doi.org/10.1103/PhysRevLett.70.3376
https://arxiv.org/abs/hep-ph/9301236
https://doi.org/10.1103/PhysRevLett.72.3461
https://arxiv.org/abs/hep-ph/9403403
https://doi.org/10.1103/PhysRevD.50.4209
https://arxiv.org/abs/hep-ph/9406285
https://doi.org/10.1016/S0370-1573(01)00061-8
https://arxiv.org/abs/hep-ph/0101103
https://inspirehep.net/files/3fba62a9200e531a616211c440905b9d
https://inspirehep.net/files/3fba62a9200e531a616211c440905b9d
https://inspirehep.net/files/3fba62a9200e531a616211c440905b9d
https://doi.org/10.1103/PhysRevD.48.2916
https://doi.org/10.1016/0370-2693(96)00633-8
https://arxiv.org/abs/hep-ph/9602357
https://doi.org/10.1103/PhysRevD.56.5254
https://arxiv.org/abs/astro-ph/9704214
https://doi.org/10.1103/PhysRevD.59.023004
https://arxiv.org/abs/hep-ph/9801434
https://doi.org/10.48550/arXiv.hep-ph/9401300
https://doi.org/10.1088/1126-6708/2003/01/030
https://arxiv.org/abs/hep-ph/0209353
https://arxiv.org/abs/hep-ph/0209353
https://arxiv.org/abs/hep-ph/0209353
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1088/1126-6708/2003/05/051
https://arxiv.org/abs/hep-ph/0302165
https://doi.org/10.1007/978-3-0348-8165-4_2
https://doi.org/10.1142/7881
https://doi.org/10.1139/p04-035
https://arxiv.org/abs/hep-ph/0312103
https://doi.org/10.1103/PhysRevD.73.125004
https://arxiv.org/abs/hep-ph/0603029
https://doi.org/10.1103/PhysRevD.90.034018
https://arxiv.org/abs/1406.7032
https://doi.org/10.1103/PhysRev.94.511


272 Will be inserted by the editor

223. J.M. Greene, Improved Bhatnagar-Gross-Krook model of electron-ion collisions.7589

The Physics of Fluids 16(11), 2022–2023 (1973). doi:10.1063/1.1694254.7590

https://pubs.aip.org/aip/pfl/article-pdf/16/11/2022/12262579/2022 1 online.pdf7591

224. G.S. Rocha, G.S. Denicol, J. Noronha, Novel Relaxation Time Approximation to7592

the Relativistic Boltzmann Equation. Phys. Rev. Lett. 127(4), 042301 (2021).7593

doi:10.1103/PhysRevLett.127.042301. arXiv:2103.07489 [nucl-th]7594

225. P. Singha, S. Bhadury, A. Mukherjee, A. Jaiswal, Relativistic BGK hydrodynam-7595

ics. Eur. Phys. J. C 84(4), 417 (2024). doi:10.1140/epjc/s10052-024-12784-9.7596

arXiv:2301.00544 [nucl-th]7597

226. A. Das, H. Mishra, R.K. Mohapatra, Diffusion matrix associated with the diffusion7598

processes of multiple conserved charges in a hot and dense hadronic matter. Phys.7599

Rev. D 106(1), 014013 (2022). doi:10.1103/PhysRevD.106.014013. arXiv:2109.015437600

[nucl-th]7601

227. R. Starke, G.A.H. Schober, Relativistic covariance of Ohm’s law. Int. J. Mod. Phys. D7602

25(11), 1640010 (2016). doi:10.1142/S0218271816400101. arXiv:1409.3723 [math-ph]7603

228. P. Drude, Zur elektronentheorie der metalle. Annalen der Physik 312(3), 687–6927604

(1902). doi:10.1002/andp.190030603127605

229. J. Hurst, O. Morandi, G. Manfredi, P.A. Hervieux, Semiclassical vlasov and fluid models7606

for an electron gas with spin effects. The European Physical Journal D 68, 1–11 (2014).7607

doi:10.1140/epjd/e2014-50205-57608

230. J.P. Dougherty, Model Fokker-Planck Equation for a Plasma and Its Solu-7609

tion. The Physics of Fluids 7(11), 1788–1799 (1964). doi:10.1063/1.2746779.7610

https://pubs.aip.org/aip/pfl/article-pdf/7/11/1788/12277137/1788 1 online.pdf7611

231. M. Francisquez, J. Juno, A. Hakim, G.W. Hammett, D.R. Ernst, Improved multi-7612

species dougherty collisions. Journal of Plasma Physics 88(3), 905880303 (2022).7613

doi:10.1017/S00223778220002897614

232. R.S.B. Ong, M.Y. Yu, The effect of velocity space diffusion on the univer-7615

sal instability in a plasma. Journal of Plasma Physics 4(4), 729–738 (1970).7616

doi:10.1017/S00223778000053897617

233. J.I. Kapusta, Screening of static QED electric fields in hot QCD. Phys. Rev. D 46,7618

4749–4753 (1992). doi:10.1103/PhysRevD.46.47497619

234. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The Effects of topological charge change7620

in heavy ion collisions: ’Event by event P and CP violation’. Nucl. Phys. A 803, 227–7621

253 (2008). doi:10.1016/j.nuclphysa.2008.02.298. arXiv:0711.0950 [hep-ph]7622
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