Mathematical Necessities for Physics 371

1) Complex numbers

Let $z=x+i y$ be any complex number, where x and y are real, and $i=\sqrt{-1}$. Then $x=\operatorname{Re} z$ and $y=\operatorname{Im} z$. The complex conjugate of z is defined to be $z^{*}=x-i y$. Note that

$$
z z^{*}=(x+i y)(x-i y)=x^{2}+y^{2} \equiv|z|^{2} .
$$

Complex numbers can also be expressed in polar coordinates using the identity $e^{i \theta}=$ $\cos \theta+i \sin \theta$. Let $z=r e^{i \theta}$, where r and θ are real. Then $r=|z|=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}(y / x)$.
Examples: i) If $z_{1}=z_{2}$ then $x_{1}=x_{2}$ and $y_{1}=y_{2}$. ii) $z / z^{*}=\frac{x+i y}{x-i y}=e^{i 2 \theta}$.
For the purposes of this course, algebra and calculus with complex numbers is entirely analogous to that with real numbers.

2) Gaussian integrals

Define $I(\alpha)=\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x$.
i) $I(\alpha)=\sqrt{\pi / \alpha}$.
ii) $-d I / d \alpha=\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x$.
iii) Clearly, $(-1)^{n} d^{n} I / d \alpha^{n}=\int_{-\infty}^{\infty} x^{2 n} e^{-\alpha x^{2}} d x$.

3) Dirac delta function

Define

$$
\delta\left(x-x_{0}\right) \equiv \lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k\left(x-x_{0}\right)-\epsilon k^{2}}
$$

The delta function has the important property

$$
\int_{a}^{b} f(x) \delta(x-c) d x=\left\{\begin{array}{cc}
f(c) & \text { if } a<c<b \\
0 & \text { otherwise }
\end{array}\right.
$$

4) Fourier transforms

Let

$$
\tilde{\psi}(k)=\int_{-\infty}^{\infty} \psi(x) e^{-i k x} d x
$$

Then

$$
\psi(x)=\int_{-\infty}^{\infty} \tilde{\psi}(k) e^{i k x} \frac{d k}{2 \pi} .
$$

5) Probability

Let $\rho(x)$ be the probability density in one dimension. The probability to find a particle in the interval (a, b) is $P(a, b)=\int_{a}^{b} \rho(x) d x$. The total probability to find the particle
somewhere should be unity: $\int_{-\infty}^{\infty} \rho(x) d x=1$. The average value of any function $f(x)$ is

$$
\langle f\rangle=\int_{-\infty}^{\infty} f(x) \rho(x) d x
$$

The variance of a function is defined to be

$$
\operatorname{var} f=\delta f^{2} \equiv\left\langle(f-\langle f\rangle)^{2}\right\rangle=\left\langle f^{2}\right\rangle-\langle f\rangle^{2} \geq 0
$$

The standard deviation $\delta f \equiv \sqrt{\operatorname{var} f} . \delta f$ is a measure of the range of likely values of f.
These formulas have nothing particular to do with quantum mechanics; this is just probability theory.

6) Linear algebra

The transpose of a matrix A is denoted by A^{T}. If $A_{i j}$ is the $i j$ th matrix element of A, then $\left(A^{\mathrm{T}}\right)_{i j}=A_{j i}$.

The Hermitian conjugate of a matrix A is denoted by A^{\dagger}. Note that $A^{\dagger}=\left(A^{*}\right)^{\mathrm{T}}$.
If the matrix A and the vector a satisfy the equation

$$
A \mathbf{a}=\lambda \mathbf{a}
$$

where λ is a number, then \mathbf{a} is said to be an eigenvector of A, and λ is the corresponding eigenvalue.
The eigenvalues of a square matrix A are determined by the characteristic equation

$$
\operatorname{det}\{A-\lambda I\}=0
$$

where I is the unit matrix.
A hermitian matrix H satisfies $H^{\dagger}=H$. The eigenvalues of such a matrix are real, and the eigenvectors can be chosen orthonormal.

A unitary matrix U satisfies $U^{\dagger}=U^{-1}$. The eigenvalues of such a matrix lie on the unit circle in the complex plane, and the eigenvectors can be chosen orthonormal. Every unitary matrix can be related to a corresponding hermitian matrix: $U=e^{i H}$.

