
INSTITUTE OF PHYSICS PUBLISHING PHYSICAL BIOLOGY

Phys. Biol. 2 (2005) 189–199 doi:10.1088/1478-3975/2/3/006

How to make a spiral bacterium
Charles W Wolgemuth1, Yuki F Inclan2, Julie Quan3, Sulav Mukherjee4,
George Oster5 and M A R Koehl3

1 Department of Cell Biology, University of Connecticut Health Center, Farmington,
CT 06030-3505, USA
2 Biophysics Graduate Group, University of California, Berkeley, CA 94720-3202, USA
3 Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
4 Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-2247, USA
5 Departments of Molecular & Cellular Biology and ESPM, University of California, Berkeley,
CA 94720-3112, USA

Received 25 April 2005
Accepted for publication 2 September 2005
Published 22 September 2005
Online at stacks.iop.org/PhysBio/2/189

Abstract
The motility of some kinds of bacteria depends on their spiral form, as does the virulence of
certain pathogenic species. We propose a novel mechanism for the development of spiral shape
in bacteria and the supercoiling of chains (‘filaments’) of many cells. Recently discovered
actin-like proteins lying just under the cell wall form fibers that play a role in maintaining cell
shape. Some species have a single actin-like fiber helically wrapped around the cell, while
others have two fibers wrapped in the same direction. Here, we show that if these fibers
elongate more slowly than growth lengthens the cell, the cell both twists and bends, taking on a
spiral shape. We tested this mechanism using a mathematical model of expanding fiber-wound
structures and via experiments that measure the shape changes of elongating physical models.
Comparison of the model with in vivo experiments on stationary phase Caulobacter crescentus
filaments provide the first evidence that mechanical stretching of cytoskeletal fibers influences
cell morphology. Any hydraulic cylinder can spiral by this mechanism if it is reinforced by
stretch-resistant fibers wrapped helically in the same direction, or shortened by contractile
elements. This might be useful in the design of man-made actuators.

1. Introduction

Most bacteria are cylindrical or nearly spherical. However,
some bacteria have spiral shapes or grow into spiral filaments
if the cells remain connected after dividing. The bacterial cell
wall is a polymer mesh of peptidoglycan enclosing the inner
membrane bilayer. It provides the cell with the structural
reinforcement necessary to resist the cytoplasmic turgor
pressure (Arnoldi et al 2000). However, the peptidoglycan
layer alone does not determine the cylindrical or spiral shape
of cells. For example, spirochetes have a spiral shape because
of the helically shaped flagella between their inner and outer
membranes (Charon and Goldstein 2002, Goldstein et al 1994,
Ruby et al 1997). In this paper, we focus on the mechanism
responsible for the spiral shape of other types of bacteria,
including single-celled species such as Caulobacter crescentus
(Fischer et al 2002, Wortinger et al 1998) and Vibiro cholerae
(Buddelmeijer et al 2002), and species that form long, coiled

filaments of cells, such as Bacillus subtilis (Mendelson 1976,
Mendelson et al 1995).

Rod-shaped bacteria grow by extending along their
cylindrical axis of symmetry and then dividing and separating
in the middle (Koch 2000, Mendelson 1982). However, certain
strains, or mutants, of some species form chains of cells
that do not separate upon replication. These multicellular
filaments, under particular growth conditions, take on a spiral
form and wrap around themselves to produce super-coiled
structures reminiscent of tangled telephone cords; examples
are Bacillis subtilis (Mendelson 1976, Mendelson et al
1995), Bacillus stearothermophilus (Anagnostopoulus and
Sidhu 1979), Mastigocladus laminosus (Hernandez-Muniz
and Stevens 1988) and Thermus sp. (Janssen et al 1991)
(figure 1). Other bacteria, such as Caulobacter crescentus
(Fischer et al 2002, Wortinger et al 1998) and Vibrio cholera
(Buddelmeijer et al 2002), the major causative agent of
cholera epidemics (Meno et al 1998), form single-celled spiral
filaments when starved or stressed. Of these examples, the
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Figure 1. Spiral shapes of bacteria. (a) Supercoiled structure of
cyanobacterium M. laminosus (Hernandez-Muniz and Stevens
1988) (reprinted with permission from Stanley E Stevens).
(b) Supercoiled structure of B. subtilis (Mendelson 1976) (reprinted
with permission from National Academy of Sciences).
(c) V. cholerae cells expressing YgbQ and (d) with depleted YgbQ
(Buddelmeijer et al 2002) (reprinted with permission from National
Academy of Sciences). (e) Exponentially growing and
(f ) stationary phase C. crescentus (Ausmees et al 2003) (reprinted
with permission from Elsevier). Scale bars: 20 µm (a), 10 µm (b),
10 µm (c, d) and 2 µm (e, f ).

supercoiled filaments of B. subtilis have been studied most
extensively (Jones et al 2001, Mendelson 1976, Mendelson
et al 1995, Wolgemuth et al 2004).

Recent evidence suggests that the actin-like protein fibers,
MreB and Mbl, form helices beneath the cell membrane of
rod- and spiral-shaped bacterial cells, and appear to play
a crucial role in determining and maintaining cell shape
(Carballido-Lopez and Errington 2003, Figge et al 2004,
Jones et al 2001, Kurner et al 2005). The tensile stresses
(forces per cross-sectional area bearing those forces) around
the periphery of a cylindrical body with an internal turgor
pressure are twice as big in the circumferential direction as
in the longitudinal direction (Koehl et al 2000, Wainwright
1988). Thus, pressurized cylinders tend to expand radially
and become more spherical unless they are reinforced to resist
radial expansion. MreB appears to play this role in cylindrical
bacteria either by acting as a mechanical strut that provides

direct structural reinforcement or by providing a scaffold that
localizes enzymes responsible for cell wall synthesis: when
MreB is depleted, the rod-shaped cells of B. subtilis (Jones
et al 2001), Escherichia coli (Doi et al 1988, Wachi et al 1987)
and Caulobacter crescentus (Figge et al 2004) round up. On
the other hand, Mbl fibers have been implicated in determining
the length and straightness of bacterial cells (Jones et al 2001).
Cells with a mutated mbl gene have an abnormal morphology
that is bent and twisted at irregular angles (Jones et al 2001).
In B. subtilis, two Mbl fibers, each at an angle of ∼52◦ relative
to the long axis of the cell, wrap helically around the cell in the
same direction, but 180◦ out of phase with each other (Jones
et al 2001). A model by Wolgemuth et al (2004) showed that
a helical structure with a pitch similar to that of Mbl fibers
surrounding a growing bacterial cell can produce the same
phenomenon observed in supercoiled multicellular filaments
of B. subtilis. While B. subtilis is wrapped with two helical
Mbl fibers, C. crescentus is wrapped by a single fiber of an
intermediate filament-like protein, which has been implicated
in shape determination (Ausmees et al 2003).

In this paper, we propose a novel mechanism by
which bacteria can take on spiral form when there is
a difference between the elongation of the cell and of
the cytoskeletal fibers wrapped around it helically. To
determine whether this mechanism can produce spiraling, we
develop a mathematical model that describes the coupling
between elongation of the cell and the extension of the
bacterial cytoskeleton, and use the model to predict the shape
changes that would occur when a cell or chain of cells
lengthens. We test the mathematical model by comparing
its predictions to the deformations measured experimentally
for physical models of fiber-wrapped elongating cylinders.
We use the mathematical and physical models to investigate
two separate cases: (1) one cytoskeletal fiber is helically
wrapped along the length of the cell and (2) two
fibers are wrapped helically in the same direction, but perfectly
out of phase with one another. Finally, experiments on
stationary phase C. crescentus filaments show quantitative
agreement with the model and provide the first evidence that
mechanical stretching of the bacterial cytoskeleton influences
cell morphology.

2. Mechanism of becoming spiral in shape

We propose a mechanism by which a helical fiber—or pair
of fibers with the same handedness—wrapped around the
periphery of a cylindrical cell, can induce a spiral shape. The
essential aspect of our model is that the fiber(s) either extend
in length less than the rest of the cell during growth or that the
fiber(s) actively shorten or elongate more than the rest of the
cell. Thus, our proposed mechanism is applicable if the fiber
itself is inextensible, if the fiber actively changes in length, as
suggested by Kurner et al (2005), or if the fiber directs the
orientation of stretch-resistant peptidoglycan molecules in the
cell wall (Mbl has been implicated in directing peptidoglycan
synthesis (Daniel and Errington 2003)).

Consider a cylindrical bacterial cell (or multicellular
filament) with a single polymer fiber attached rigidly to
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Figure 2. Schematic diagrams of the model. (a) A cylindrical bacterium with a polymer fiber adhered to the wall parallel to the long axis.
Growth lengthens the bacterium, but the fiber length stays fixed, causing the centerline of the bacterium to bend. (b) Stretching a spring
produces rotation of the ends in opposite directions. (c) A cylindrical bacterium with a helically wrapped polymer fiber adhered to the wall.
Growth of the bacterium causes the cell body to twist (black arrows), producing shear stresses in the wall that deforms the cylinder into a
spiral shape. (d) A cylindrical bacterium with two fibers helically wrapped in the same direction, but 180◦ out of phase with each other.
Growth causes the bacterium to elongate and twist into a spiral shape more pronounced than in the single-fibered case.

the inside of the cell wall parallel to the cell’s long axis
(figure 2(a)). If the cell grows in length but the fiber
either remains fixed in length or grows more slowly than the
bacterium, the cell will bend into the form of a curved rod,
much as changes in temperature bend a bimetallic strip. The
same thing occurs if the fiber contracts (i.e., shortens relative
to the cell), but the cell bends in the opposite direction if
the fiber elongates more than the cell. Now consider a cell
around which the polymer fiber is helically wrapped. If you
stretch a helical spring, it elongates along its axis and the ends
twist in opposite directions (figure 2(b)). In a similar manner,
elongation of a cell that is wrapped with a helical fiber that
does not extend as much as the cell does will cause the cell to
twist about its centerline. This will induce shear stresses in the
wall of the cell (figure 2(c)). Since the cell is elongating faster
than the fiber, it also bends with the fiber on the concave side
of the bend (as shown in figure 2(a)). This combination of
twisting and bending curves the cell around into a spiral shape
(figure 2(c)). If there are two fibers wrapped around the cell in
the same direction, but perfectly out of phase with one another,
then the torsional stresses induced in the wall are greater
for a given increase in cell length, and the cell twists more
(figure 2(d)).

For small to moderate deformations, bacterial cells
respond elastically. Experiments using an optical trap
measured the bending modulus of filaments of B. subtilis and
found it to be 1.6 × 10−12 ergs cm (Mendelson et al 2000).
From this experiment, Young’s modulus of the cell wall was
estimated to be 5.0 MPa (Mendelson et al 2000). Therefore,
we model the cell as an elastic object with an inextensible,
helically wrapped fiber attached to the wall. As the bending
modulus of actin is on the order of 10−17 ergs cm (Isambert
et al 1995, Kas et al 1993), we neglect the bending elasticity of

the Mbl fibers relative to the bending elasticity of the bacterial
filament.

3. Materials and methods

3.1. Physical models

The design of our physical models was also based on the
morphology of B. subtilis. Each model was constructed as
an inflatable polyurethane cylinder with a resting length-to-
diameter ratio equivalent to that of 2.5 cells in a filament. Since
filaments of B. subtilis cells do not show radial expansion as
they grow (Jones et al 2001), we embedded circumferentially
oriented inextensible threads in the walls of the models to
mimic the effect of MreB fibers resisting the diameter increase
that would otherwise occur during inflation. In one model, we
also embedded two inextensible fibers (ribbons of width =
6.25 × 10−2 of model diameter) in the wall, wrapped helically
in the same direction around the model at an angle of 52◦ to
the model’s long axis, and out of phase with each other by
180◦ (B. subtilis filaments are composed of individual cells
connected together end-to-end but separated by septa. Our
model assumes that after septum formation, the Mbl fibers
remain in their pre-cell-division alignment and that tensile
stress is transmitted between neighboring cells). Another
model was wrapped with only one such ribbon at an angle
of 52◦ to the model’s long axis.

3.2. Fabrication of physical models

Inflatable polyurethane models of elongating bacteria
reinforced with relatively inextensible helically wrapped fibers
were constructed using the techniques described by Koehl
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Figure 3. Diagrams of the one-fiber and two-fiber physical models.

et al (2000). A metal rod (diameter = 2.54 cm) served as
a mold (‘mandrel’) for the models. The mandrel surface
was lubricated with PAM R© (American Home Foods) and then
coated with a layer of polyurethane (BJB Enterprises, Shore
A polyurethane, type LS-30) that was allowed to polymerize
while the mandrel was rotated about its long axis by a motor to
maintain an even distribution of the solution as it cured for at
least 30 min. A second coat was applied and polymerized on
the rotating mandrel in the same way. We then fitted a small
hemispherical cap of silk fabric to the rounded end of the model
to prevent rupture, and applied a third layer of polyurethane to
the model, as described above.

We then embedded relatively inextensible polyester thread
(Mölnlycke #9313) in the walls of the models to resist the
diameter increase that would otherwise occur during inflation.
We wound the thread around the polymerized polyurethane on
the mandrel, starting at the proximal end of the model and using
ten wraps of the thread per centimeter length of the model.
A second thread was then wound around the model with the
same spacing and angle, but in the opposite direction, starting
at the distal end. This crossed-helical array of threads that were
oriented at angles of +89.3◦ and −89.3◦ with respect to the long
axis of the cylinder (i.e., they were nearly circumferential in
orientation) was designed to prevent radial expansion of the
model when it was inflated without imposing any twist on it.
The model was then coated with another layer of polyurethane,
which impregnated the threads when it was applied, and after
this layer of polyurethane polymerized on the rotating model,
another layer of polyurethane was applied.

We then wrapped the ‘two-fiber model’ with two relatively
inextensible polyester satin ribbons (width = 1.6 mm;
C M Offray and Sons), wound helically around the model
in the same direction at an angle of 52◦ to the model’s long
axis and out of phase with each other by 180◦, to mimic
the orientation of Mbl fibers in B. subtilis (Jones et al 2001)
(figure 3). Another model, the ‘one-fiber model’, was wrapped
with only one such ribbon at an angle of 52◦ to the model’s
long axis. The model was then coated with another layer
of polyurethane, which impregnated the ribbon when it was
applied, and after this layer polymerized, a final coat of
polyurethane was applied, and the model was left to cure for
5 days before being removed from the mandrel.

Rows of dots (figures 4(b) and (c)) were painted on the
surface of each model using white correction fluid (Wite-out©,
MMM BIC USA, Inc.).

3.3. Inflation of models, measurement of internal pressure
and video recording

We elongated each model by inflating it, using the apparatus
shown in figure 4(a). To avoid effects of gravity and friction
on the behavior of the models, we inflated the models with
air and then floated them on the surface of a water bath.
Each model was clamped to a flexible pipe in series with a
pressure gage (Omega PGS-35L-60; full scale = 414 kN m−2),
a two-way-valve, and a manual air pump (Crank Brothers,
Dual Piston Power Pump). After inflating the models to each
target pressure (0, 14, 27, 41, 55, 69 and 82 kN m−2, each
±2 kN m−2), we closed the valve to maintain constant pressure
while we videotaped the model. Each model was inflated to
each of these pressures during each of five separate replicate
experiments. We did not inflate the physical models beyond
82 kN m−2 to avoid rupturing them. All measurements were
made at room temperature (24 ◦C).

Models were videotaped in a darkened room using a Sony
Handycam Vision color camcorder, DCR-TRV9 affixed above
the tank with the lens parallel to the surface of the water in
the tank. The floor of the tank was coated with black felt
to maximize contrast with the model, which was illuminated
through the sides of the tank by two fiber optic lamps (Cole-
Parmer Model 9741–50). A wooden ruler floating on the water
provided a size scale in the video images.

3.4. Image analysis and measurement of model deformations

Video recordings were converted to Quicktime movies using
iMovie software. We advanced through the video recordings
frame-by-frame using NIH Image 1.62 software to select the
clearest image of the model at each pressure for each of the
five replicates of each experiment. These images were used to
determine the following measures of model deformation.

3.4.1. Midline length ratio. Midline length ratio is a non-
dimensionalized measure of the elongation of the model
(figure 4(b)). Using NIH Image 1.62, we adjusted the black
and white contrast of each image until the physical model was
white and the background was black, then determined the x, y
coordinates for the points along the top and bottom edges of the
model, and used these values to calculate the x, y coordinates of
points along the midline of the model. The distances between
these points along the midline were calculated, and their sum
was used as midline length. For each of the five replicate
experiments conducted on a model, the midline length of the
inflated model at a given pressure was divided by its midline
length at zero pressure during the same experiment to yield
the midline length ratio.

3.4.2. Fiber angle, θ . Fiber angle is the angle of the ribbon(s)
with respect to the long axis of model (figure 3). On printouts
of the images of the models, we identified points where the
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Figure 4. (a) Diagram of the apparatus for inflating the physical models. (b) Midline length ratio = L/Lo. Top: before inflation, bottom:
model after inflation. (c) Torsion angle, φ, and extension ratio. Top: model before inflation, middle: model after inflation, bottom: torsion
angle, φ = the angle between line segments ‘a’ and ‘b’. Extension ratio (stretch of material in wall of model = b/a).

ribbons intersected with the midline of the model. We used a
protractor to measure the angle (to the nearest degree) between
a line drawn with a ruler to be parallel with the local midline
and a line drawn to be parallel to the ribbon at each of those
points of intersection. The mean of all θ measured for a given
pressure in each experiment was used as the θ for that pressure
for that replicate.

3.4.3. Extension ratio. Extension ratio is a measure of
the longitudinal stretching of the material in the wall of an
inflated model (figure 4(b)). Because the model twists when
it is inflated, a row of dots (marking points on the wall of a
model) that was parallel to the long axis of the model when the
model was unpressurized were displaced to describe a helix
around the model when it was pressurized. We identified seven
neighboring dots within a longitudinal row of dots that were
near the midline of the model when it was inflated, so that
the distances between the dots would not be distorted in the
image by the curvature of the model. We divided the distance
measured (using NIH Image 1.62) between dot #1 and dot #7
(figure 4(c)) on the model when inflated to a given pressure,

by the distance between those same dots at zero pressure to
calculate extension ratio.

3.4.4. Torsion angle, φ. Torison angle, φ, is a measure of the
amount a model twists when inflated (figure 3). We selected
and copied the line segment (‘b’ in figure 4(c)) between the
dots (#1 and #7) that were used to measure extension ratio
of an inflated model at a particular pressure. We pasted
that line segment ‘b’ onto the image of that same model at
zero pressure during the same experiment. We measured the
angle, φ, between line segment ‘b’ and the line segment ‘a’
(figure 4(c)) between those same dots in the image of the model
at zero pressure.

3.5. Bacterial strains, growth and measurements

C. crescentus strain CJW815 was obtained from C Jacobs-
Wagner (Ausmees et al 2003) and was grown in peptone–
yeast extract (PYE) complex media at 30 ◦C (Ely 1991).
Cell cultures were grown for at least two weeks and up to
a month to produce stationary state spiral cells. A Zeiss
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Figure 5. Values calculated for the mathematical models of one-fibered (solid line) and two-fibered (dashed line) cylinders, and measured
for one-fibered (black circles) and two-fibered (open squares) physical models. Error bars represent 1 standard deviation (n = 5 replicate
experiments). (a) Midline length ratio of the physical models at different internal pressures, (b) fiber angle, θ , between the reinforcing fibers
and the local long axis of the model, plotted as a function of midline extension. The mathematical model predicts more pronounced
reductions in θ per change in midline length for the two-fibered model, but these differences were not measurable over the range of
extensions possible with our physical models. (c) Extension ratio (distance between dots painted on the surface of the model divided by the
distance between them at zero pressure), a measure of the stretch of the model wall, plotted as a function of midline extension ratio.
(d) Torsion angle, φ (angle between a row of dots on the surface of the model and the line connecting those dots at zero pressure), a measure
of the degree of twisting of the model, plotted as a function of midline length ratio.

LSM 510 confocal microscope mounted on an Axiovert 100M
with automated xyz control fitted with an Plan-Apochromat
objective (63×/1.4 NA Oil objective) and a Perkin-Elmer
UltraView spinning disc connected to a Nikon Eclipse
TE2000-S microscope with a Plan Apochromat objective
(60×/1.4 NA Oil objective) were used to image the cells.
Brightfield images were used to measure the average pitch and
helix diameter of stationary phase cells using ImageJ software
package (developed at the United States National Institutes
of Health by Wayne Rasband and available on the internet at
http://rsb.info.nih.gov/ij) (see figure 6). The pitch and the
diameter were measured at numerous locations along the cell
length and averaged. The total cell length was measured using
ImageJ by tracing the contour of the cell in an xy image slice.

4. Results and discussion

Solving the equations of our mathematical model for the shape
of the cylinder at different lengths, while keeping the fiber
length fixed, shows that the cylinder deforms into a spiral
shape similar to that observed in the bacteria shown in figure 1
(for a detailed description of the mathematical model, see the

appendices). Similarly, each physical model twisted and bent
into a segment of a spiral as it elongated (figures 4(b) and (c)).

To compare the behavior of our mathematical and physical
models, we assessed several aspects of the deformation of the
cylinders at a range of extensions. First, we measured the
dimensionless extension of the cylinder, defined as the midline
length ratio, which is the extended length of the contour
midline of the cylinder divided by its initial, uninflated midline
length at zero pressure (figure 5(a)). For both the one- and
two-fiber models, the midline length ratio increased linearly
with applied pressure. Therefore, the physical models respond
like a linearly elastic filament with constant Young’s modulus.
We calculated the effective Young’s modulus for both physical
models and found values of 2.2 kPa for the one-fiber model
and 1.5 kPa for the two-fiber model.

As the filament extends, the fiber angle, θ (defined as
the angle between the inextensible fiber(s) and the long axis
of the cylinder), decreases due to untwisting of the fiber(s)
(figure 5(b)). For small extensions, the changes in fiber angle
due to extension were roughly comparable between the one-
and two-fiber models. These changes also agree with the
mathematical model.

The extension ratio (a measure of the tensile strain, or
stretching, of the wall of the cylinder) increases as the filament
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extends (figure 5(c)). The one-fiber model shows a greater
increase in extension ratio with extension of the filament than
the two-fiber model. In contrast, we measured the torsion
angle, φ (a measure of the amount the cylinder twisted),
which increases more for the two-fiber model than the one-
fiber model (figure 5(d)). This result is due to the fact that
for the two-fiber model, the tension in the fibers opposes one
another for bending, and, therefore, the filament must twist
more. There is good agreement between the predictions of the
mathematical model and the measurements on the physical
models (figure 5).

Our models permit us to compare the behavior of inflating
cylinders reinforced with one fiber versus those reinforced
with two fibers wrapped around the cylinder in the same
direction. Both models show a linear relationship between
internal pressure and midline length, but the two-fiber model
elongates more per pressure increase than does the one-fiber
model (figure 5(a)); however, for a given increase in midline
length, the material in the wall of the two-fiber cylinder
stretches less than in the one-fiber cylinder (figure 5(c)), as
the one-fiber model both twists and bends, whereas the two-
fiber cylinder deforms mostly by twisting (figure 5(d)).

The behavior of our models is consistent with several
qualitative observations on bacteria. (1) Our models show
that the angle, θ , of the fiber relative to the long axis of the
cell decreases as the cell elongates (i.e., the pitch of the fiber
becomes greater) (figure 5(b)). Similarly, the pitch of Mbl
fibers in rapidly elongating B. subtilis increases (Carballido-
Lopez and Errington 2003), and measured changes in the θ

of the Mbl fibers matches our model predictions (Mukherjee
et al 2005). (2) The mechanism we propose for producing a
spiral shape predicts shear stresses in the walls of the twisting,
elongating cylinder (figure 5(d)). A mechanical model shows
that such shear stresses in the wall of a twisting cell can
drive the supercoiling motions observed in multicellular spiral
filaments of a number of bacterial species (Wolgemuth et al
2004) (figures 5(a) and (b)). (3) Our model predicts that as
the cylinder becomes longer, the spiral shape becomes tighter
(i.e., the cylinder becomes more curved, so that the radius of
the spiral relative to its pitch becomes smaller).

The results of our mathematical model and physical
model experiments suggest that bacterial cells in which one
helically wrapped cytoskeletal fiber is attached to the cell wall
should become more helical as the cell filament elongates.
Therefore, as the cell lengthens, both the pitch and the radius of
curvature should decrease. C. crescentus cells posses two such
cytoskeletal filaments, MreB and the intermediate filament-
like protein, CreS. During stationary phase, some wild-type
cells form long spiral filaments. Mutant cells lacking CreS,
however, form long cylindrical filaments. To test our model in
vivo, we examined filamentous stationary phase C. crescentus
cells from strain CJW815 (Ausmees et al 2003). We measured
the average helix diameter, d, and pitch, P, of the cell body as
a function of filament length (see figure 6(a)). As predicted by
the model, both the diameter and pitch decreased as the cell
length increased (figures 6(b) and (c)). During the extension
of the cell filament, it is necessary that the CreS fiber also
extends. Based on our results, extension of the CreS fiber

(a)

(b)

(c)

Figure 6. (a) Brightfield image of C. crescenuts strain CJW815.
Two spiral-form stationary phase cells are shown. The pitch of each
of these cells, P1 and P2, is measured by the distance between
neighboring peaks. It is clear that the pitch of the longer filament is
shorter than that of the shorter filament. In addition, the shorter
filament also has a larger helix diameter than the longer filament.
Scale bar: 5 µm. (b) Helix pitch versus filament length and (c) helix
diameter versus filament length for a number of spiral form cells.
The black lines are linear fits to the data.

must not be equivalent to the lengthening of the cell filament.
As the amount of extension of the CreS fiber is unknown, direct
quantitative comparison between the model and the results of
the C. crescentus experiment was not possible. It is also likely
that the elasticity of the CreS fiber will affect the results.

It has been previously suggested that crescentin directly
confers spiral form to C. crescentus (Ausmees et al 2003), i.e.,
because CreS forms a helical fiber that binds to the cell wall,
the cell body is also helical with a pitch and helix diameter
that are due to the helicity of crescentin. If this hypothesis is
correct, then as the cell filament lengthens, the helix diameter
and pitch should not change. Our results show that lengthening
of the cell changes the pitch and helix diameter. This result is in
agreement with the model presented here that growth of the cell
wall that is not equal to the extension of the cytoskeleton twists
the cell wall, thereby producing spiral form. The mathematical
model that is developed provides a framework with which to
begin to explore the mechanisms by which the prokaryotic
cytoskeleton produces and maintains cellular morphology.
The experiments using the physical models show proof-of-
principle the general nature of this model, which provides
further evidence that this mechanism may be at play in many
non-coccoid bacteria, and, indeed, recent experiments on the
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supercoiling of B. subtilis are in direct agreement with the
results presented here (Mukherjee et al 2005).

5. Conclusion and outlook

There are many cases of spiraling and supercoiling in
prokaryotes. The mechanical mechanism proposed here for
altering shape between spiral and non-spiral forms could be
operating in many types of cells that are helically wound
with stretch-resistant or contractile fibers. For example, the
mechanism we propose can explain why curved-rod bacteria
such as C. crescentus (Fischer et al 2002, Wortinger et al
1998) and V. cholerae (Buddelmeijer et al 2002) become
spirals as they lengthen when starved, and why multicellular
filaments of many species of bacteria wrap around themselves
to form supercoiled structures (Anagnostopoulus and Sidhu
1979, Hernandez-Muniz and Stevens 1988, Janssen et al 1991,
Mendelson 1976, Mendelson et al 1995).

Many biological structures other than bacteria are
pressurized cylinders whose walls are wrapped with relatively
inextensible fibers (Koehl et al 2000, Wainwright 1988), e.g.,
plant cells, sea anemones, frog notochords, squid tentacles,
worms, mammalian tongues), as well as some man-made
hydraulic devices (e.g., McKibbon ‘muscles’). However,
in contrast to the bacteria we have modeled, most of those
hydraulic structures are reinforced with a crossed-helical
array of fibers (i.e., some fibers wrap around the cylinder
in one direction, while others wrap around the cylinder in
the opposite direction). These structures do not twist or
spiral when they extend or shorten because the clockwise
and counter-clockwise torques balance (Koehl et al 2000,
Wainwright 1988). Nevertheless, the principles underlying
the models presented here should apply to any hydraulic
cylinder that is either reinforced by stretch-resistant fibers
all wrapped helically in the same direction around the
cylinder or is shortened by contractile elements in such a
helical arrangement. It would be interesting to see if such
morphologies are found in other spiraling biological structures,
such as the tentacles of worms or medusae that coil when
retracted, and to explore whether this mechanism of spiraling
can be useful in the design of man-made actuators.

Finally, we speculate that the mechanism we have
described could be responsible for the spiraling of other cells
that have been shown to have MreB homologues, such as the
corkscrew shape of Spiroplasma (Trachtenberg 2004), or the
transformations between coccoid and spiral shapes at different
stages of growth and infection shown by Helicobacter pylori
(Andersen et al 1997, Worku et al 1999), the causative agent
of gastritis and peptic ulcer disease.
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Figure 7. Diagrammatic representation of the notation. r1 is the
vector that points to the centerline of the model and r2 is the vector
that points to the helically wrapped ribbon. s is the arclength of the
model, describing the distance along the centerline of the model.

Appendices

The configurations shown in figures 2(b) and (c) can
be analyzed mathematically by modeling the cell, or a
multicellular filament, as an elastic cylinder that is much longer
than it is wide. The helical fibers are inextensible elements
adhered to the cell wall, thereby preventing extension of the
wall along the fibers. The fibers, which act as tensile elements,
are oriented at an angle of 52◦ to the long axis of the cylinder,
and in the two-fiber case, the fibers are 180◦ out of phase
with each other, similar to the arrangement of Mbl fibers in B.
subtilis.

Appendix A. The one-fiber model

Consider a cylindrically shaped bacterial cell or a chain of
connected cells (furthermore called ‘the filament’) with 1 or 2
inextensible fibers helically wrapped around and embedded
in the wall of the filament. We begin by mathematically
describing the single-fiber model. The position of the
centerline of the filament is defined by the vector r1 and the
position of the fiber is r2 (see figure 7).

As the fiber is located at the radius of the filament, there
is a relationship between r1 and r2

r2 = r1 + a cos

(
2πs0

λ

)
ê1 + a sin

(
2πs0

λ

)
ê2 (A.1)

where a is the radius of the filament, λ is the pitch of the fiber
on the uninflated filament, s0 is the arc length of the filament
at 0 pressure and ê1 and ê2 are the unit vectors perpendicular
to the long axis of the filament. The fiber angle, θ , is the angle
between the axis of the midline of the cylinder and the angle
of the fiber. The cosine of θ is the angle between the tangents
of r1 and r2

cos θ = ∂r1

∂s
· ∂r2

∂s2
(A.2)

where s is the arc length along the extended filament and s2 is
the arc length along the fiber.
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The filament is considered to be an elastic strand that
is straight at equilibrium. Therefore, the elastic deformation
energy (the strain energy stored in the deformed material of
the cell wall) can be defined as

Eel =
∫ (

A

2

(
�2

1 + �2
2

)
+

C

2
�2

3

)
ds (A.3)

where �1 and �2 are the curvatures about ê1 and ê2,
respectively, and �3 is the twist density (twist per length).
The constants A and C characterize the elastic stiffness of
the filament in bending and twist, respectively. The fiber is
assumed to be inextensible. Therefore,

ε2

(
∂r2

∂s
· ∂r2

∂s

)
= γ 2 = constant =

(
Lf

L0

)2

= 1 +

(
2πa

λ

)2

(A.4)

where ε is the midline length ratio of the filament, γ = Lc/L0,
is the ratio of the fiber length, Lf, to the length of the filament
at zero pressure, L0. From (A.2) and (A.4), we find

cos θ = ε

γ

(
1 − a �2 cos

(
2πs0

λ

)
+ a �1 sin

(
2πs0

λ

))
.

(A.5)

We also define a constraint energy (the tensile energy stored in
the fiber because it cannot extend) to impose the inextensibility
condition for the fiber

Ec =
∫

	

(
γ − Lf

L0

)
ds0 (A.6)

where 	 is a Lagrange multiplier and LR is the length of the
fiber. The total energy for the model system is Et = Eel + Ec.
The force per unit length, f, that acts along the filament is the
functional derivative of the total energy with respect to r1

f = −δEt

δr1
. (A.7)

The twisting moment, m, about the tangent vector of the
centerline of the filament is given by

m = −δEt

δχ
(A.8)

where δχ is the angle around ê3through which ê1 rotates as it
moves to ê1 → ê1 + δ ê1.

If the filament is not moving, the force and moment per
length are zero along the entire length, f = m = 0. In the
absence of external forces, the total force, F, and total moment,
M, at the ends of the filament are zero. For an elastic filament,
the force and moment are related by (Landau and Lifshitz
1985)

∂M
∂s

− F × ∂r
∂s

= 0. (A.9)

Since the force per length is zero everywhere, and F = 0 on
the boundary, F must be zero everywhere along the filament.

Integrating (A.9) with the boundary condition gives M = 0.
Therefore, the following conditions apply:

�2 cos

(
2πs0

λ

)
− �1 sin

(
2πs0

λ

)
= a	ε2

γA + a2	ε2

�2 sin

(
2πs0

λ

)
+ �1 cos

(
2πs0

λ

)
= 0

�3 = −
(

2πa

λ

)
a	ε

γC + a2	ε2
.

(A.10)

Using this model, we can calculate the parameters measured
on the physical models.

A.1. Calculation of the midline length as a function of
pressure

If we assume that the filament is a linearly elastic object,
then the expansion of the midline length ratio, ε, should be
proportional to the applied pressure

ε = πa2YP (A.11)

where Y is Young’s modulus (i.e., resistance to stretching) of
the cell wall of the filament and P is the internal pressure.

A.2. Calculation of the fiber angle, θ

Inserting (A.10) into (A.5), we find

cos θ = ε

γ

(
1 − a2	ε

γA + a2	ε

)
(A.12)

(A.4) and (A.10) give three equations in three unknowns from
which we can solve for 	. However, rather than solving for
	 it is easier to make the definition

α = a2	ε

γA + a2	ε2
. (A.13)

Assuming that A = C and using (A.4), (A.10) and (A.13), we
find that

α = 1

aε

[
1 − γ

(ε2 + γ 2 − 1)
1
2

]
. (A.14)

Therefore, α is a function of γ and the midline length ratio.
Solving (A.14) for α and using (A.12), the fiber angle, θ , can
be calculated as a function of midline length ratios :

θ = arccos

(
ε

γ
(1 − α)

)
. (A.15)

Comparing (A.15) to the data gives γ = 1.57 or an initial fiber
angle of 50.4◦.

A.3. Calculation of the torsion angle, φ

The torsion angle, φ can be calculated as a function of midline
length ratio and can be compared with measured torsion angles
for the physical models if we assume that the dots that are
painted on the physical model are aligned with the ê1 direction.
Therefore, the vector that points to the dots is

rd = r1 + aê1. (A.16)
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The cosine of the torsion angle is

cos φ = ∂rd

∂sd

· ∂r1

∂s
= (1 − a�2)(

(1 − a�2)2 + a2�2
3

)1/2 (A.17)

where sd is the arc length along the line that connects the
painted dots. The conditions (A.10) imply that

a�2 = α cos

(
2πs0

λ

)
. (A.18)

If we look at a fixed position in s0, then a�2 = α cos β, where
β is a constant and

φ = arccos

(
(1 − α cos β)

((1 − α cos β)2 + (γ 2 − 1)α2)
1
2

)
. (A.19)

Comparing (A.19) to the data for φ from the one-fiber model
gives β = 121◦.

A.4. Calculation of the extension ratio, ER

The extension ratio, ER, is the stretch of the material in the
filament wall. It can be measured on the physical model as
the distance between adjacent dots painted on the surface of
the filament divided by the initial distance between those dots.
Therefore, the extension ratio, ER, is

ER = ε

(
∂rd

∂s
· ∂rd

∂s

) 1
2

= ε((1 − α cos β)2 + (γ 2 − 1)α2). (A.20)

The same value of β as was found above (β = 121◦) provides
good agreement with the data for ER (see figure 5 in the main
text).

Appendix B. The two-fiber model

For the two-fiber model, another fiber is added 180◦ out
of phase with respect to the first fiber but with the same
handedness. Therefore, the vector that describes the position
of this second fiber is

r3 = r1 − a cos

(
2πs0

λ

)
ê1 − a sin

(
2πs0

λ

)
ê2. (B.1)

This fiber is also assumed to be inextensible. Therefore,

ε2

(
∂r3

∂s
· ∂r3

∂s

)
= γ 2

2 =
(

Lf

L0

)2

. (B.2)

The only way both (A.4) and (B.2) can hold simultaneously is
if

�2 cos

(
2πs0

λ

)
− �1 sin

(
2πs0

λ

)
= 0. (B.3)

This implies that

γ 2 = γ 2
2 = ε2 +

(
2πa

λ
+ aε�3

)2

. (B.4)

B.1. Calculation of the midline length ratio

As in the one-fiber model, we assume that the filament is
linearly elastic with respect to extension of the midline length
ratio with applied pressure. Therefore, we use (A.11) to
calculate the midline length ratio.

B.2. Calculation of the fiber angle, θ

Using (A.24), we can maintain the same definition of the
constraint energy, Ec (A.6), and define the force, f, and
moment, m, using (A.7) and (A.8), respectively. Putting
(A.23) and (A.24) into (A.5), we find the equation for the
fiber angle, θ , versus midline length ratio, ε,

cos θ = ε

γ
. (B.5)

Comparison of this calculated θ to the measurement of θ on the
two-fiber physical model gives γ = 1.62, which is equivalent
to an initial fiber angle of 52◦. For the two-fiber model we get
the same relation for the twist density, �3, as in the one-fiber
model

�3 = −
(

2πa

λ

)
a	ε

γC + a2	ε

= −(γ 2 − 1)
1
2 α (B.6)

where α is as defined in (A.13), with C = A.

B.3. Calculation of the torsion angle and extension ratio

The torsion angle, φ, and extension ratio, ER, can be calculated
using (A.19) and (A.20). For the two-fiber model, we find a
value β = 60◦.

Glossary

Mreb/Mbl. Bacterial polymer homologous to actin in
eukaryotes.

Stress. Force per cross-sectional area bearing that stress.

Supercoiling. The process whereby a filamentous,
interconnected chain of bacteria wraps itself into a structure
resembling an overtwisted phone cord.

Young’s modulus. The ratio of stress to strain, a measure of
the stiffness of a given material.
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